КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Нормальные системы линейных однородных дифференциальных уравнений с постоянными коэффициентами
При рассмотрении систем дифференциальных уравнений ограничимся случаем системы трех уравнений (n = 3). Все нижесказанное справедливо для систем произвольного порядка.
Определение. Нормальная система дифференциальных уравнений c постоянными коэффициентами называется линейной однородной, если ее можно записать в виде: (2)
Решения системы (2) обладают следующими свойствами:
1) Если y, z, u – решения системы, то Cy, Cz, Cu, где C = const – тоже являются решениями этой системы. 2) Если y1, z1, u1 и y2, z2, u2 – решения системы, то y1 + y2, z1 + z2, u1 + u2 – тоже являются решениями системы.
Решения системы ищутся в виде: Подставляя эти значения в систему (2) и перенеся все члены в одну сторону и сократив на ekx, получаем: Для того, чтобы полученная система имела ненулевое решение необходимо и достаточно, чтобы определитель системы был равен нулю, т.е.: В результате вычисления определителя получаем уравнение третьей степени относительно k. Это уравнение называется характеристическим уравнением и имеет три корня k1, k2, k3. Каждому из этих корней соответствует ненулевое решение системы (2): Линейная комбинация этих решений с произвольными коэффициентами будет решением системы (2): Пример. Найти общее решение системы уравнений: Составим характеристическое уравнение: Решим систему уравнений: Для k1: Полагая (принимается любое значение), получаем:
Для k2: Полагая (принимается любое значение), получаем: Общее решение системы:
Этот пример может быть решен другим способом:
Продифференцируем первое уравнение: Подставим в это выражение производную у¢ = 2 x + 2 y из второго уравнения.
Подставим сюда у, выраженное из первого уравнения:
Обозначив , получаем решение системы: Пример. Найти решение системы уравнений Эта система дифференциальных уравнений не относится к рассмотренному выше типу, т.к. не является однородным (в уравнение входит независимая переменная х). Для решения продифференцируем первое уравнение по х. Получаем: Заменяя значение z’ из второго уравнения получаем: . С учетом первого уравнения, получаем: Решаем полученное дифференциальное уравнение второго порядка. Общее решение однородного уравнения:
Теперь находим частное решение неоднородного дифференциального уравнения по формуле Общее решение неоднородного уравнения:
Подставив полученное значение в первое уравнение системы, получаем: Пример. Найти решение системы уравнений:
Составим характеристическое уравнение:
1) k = -1. Если принять g = 1, то решения в этом случае получаем:
2) k2 = -2. Если принять g = 1, то получаем:
3) k3 = 3. Если принять g = 3, то получаем:
Общее решение имеет вид:
Дата добавления: 2013-12-13; Просмотров: 372; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |