КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Механические свойства биологических тканей
Рис.1 Рис. 2 Биомеханика Элементы классической механики. Механические свойства твердых тел Изменение взаимного расположения точек тела, которое приводит к изменению его формы и размеров, называют деформацией. Деформации могут быть вызваны внешними воздействиями (механическими, электрическими или магнитными) или изменением температуры тела. Здесь рассматриваются деформации, возникающие при действии сил на тело. В твердых телах деформацию называют упругой, если после прекращения действия силы она исчезает. Если же деформация сохраняется и после прекращения внешнего воздействия, то ее называют пластической. Промежуточный случай, т. е. неполное исчезновение деформации, принято называть упругопластической деформацией. Наиболее простым видом деформации является растяжение (сжатие). Оно, например, возникает в стержне (рис. 1) при действии силы, направленной вдоль его оси. Если стержень длиной l при этом удлинился на, то является мерой деформации растяжения и называется относительным удлинением.
Другим видом деформации является сдвиг (рис. 2). Сила, касательная к одной из граней прямоугольного параллелепипеда, вызывает его деформацию, превращая в косоугольный параллелепипед (см. штриховые линии на рисунке). Угол называют углом сдвига, a tg — относительным сдвигом. Так как обычно угол у мал, то можно считать tg = . При действии на тело внешней деформирующей силы приводит к возникновению внутренних сил, стремящихся вернуть атомы (ионы) в первоначальные положения. Мерой этих сил является механическое напряжение (или просто напряжение). Непосредственно напряжение не измеряется. В ряде случаев его можно вычислить через внешние силы, действующие на тело. Применительно к деформации растяжения напряжение можно выразить как отношение силы к площади поперечного сечения стержня (см. рис.1, б): = F/S. Для деформации сдвига напряжение выражают как отношение силы к площади грани, к которой сила касательна (см. рис.2, б). В этом случае т называют касательным напряжением: = F/S. Упругие деформации подчиняются закону Гука, согласно которому напряжение пропорционально деформации. Для двух рассмотренных случаев (растяжение-сжатие и сдвиг) это аналитически записывается так: и (1) где Е — модуль Юнга, a G — модуль сдвига. Экспериментальная кривая растяжения приведена на рис.3. Участок ОА соответствует упругим деформациям, точка В — пределу упругости, характеризующему то максимальное напряжение, при котором еще не имеют места деформации, остающиеся в теле после снятия напряжения (остаточные деформации). Горизонтальный участок CD кривой растяжения соответствует пределу текучести — напряжению, начиная с которого деформация возрастает без увеличения напряжения. И наконец, напряжение, определяемое наибольшей нагрузкой, выдерживаемой перед разрушением, является пределом прочности. Между упругими свойствами кристаллических мономеров и полимерных материалов существует огромная и принципиальная разница, например, в пределах прочности сталь разрывается уже при растяжении на 0,3%, а мягкие резины можно растягивать до 300%. Это связано с качественно другим механизмом упругости высокомолекулярных соединений. Упругость, свойственную полимерам, называют каучукоподобной эластичностью (высокой эластичностью или высокоэластичностью). Рис. 3 Под механическими свойствами биологических тканей понимают две их разновидности. Одна связана с процессами биологической подвижности: сокращение мышц животных, рост клеток, движение хромосом в клетках при их делении и др. Эти процессы обусловлены химическими процессами и энергетически обеспечиваются АТФ, их природа рассматривается в курсе биохимии. Условно указанную группу называют активными механическими свойствами биологических систем. Другая разновидность — пассивные механические свойства биологических тел. Рассмотрим этот вопрос применительно к биологическим тканям. . Методы определения механических свойств биологических тканей аналогичны методам определения этих свойств у технических материалов. Костная ткань. Кость — основной материал опорно-двигательного аппарата. В упрощенном виде можно считать, что 2/3 массы компактной костной ткани (0,5 объема) составляет неорганический материал, минеральное вещество кости — гидроксилапатит ЗСа3(РО4)2 • Са(ОН)2. Это вещество представлено в форме микроскопических кристалликов. В остальном кость состоит из органического материала, главным образом коллагена (высокомолекулярное соединение, волокнистый белок, обладающий высокоэластичностью). Кристаллики гидроксилапатита расположены между коллагеновыми волокнами (фибриллами). Плотность костной ткани 2400 кг/м3. Ее механические свойства зависят от многих факторов, в том числе от возраста, индивидуальных условий роста организма и, конечно, от участка организма. Композиционное строение кости придает ей нужные механические свойства: твердость, упругость и прочность. Зависимость для компактной костной ткани имеет характерный вид, показанный на рис.4, т. е. подобна аналогичной зависимости для твердого тела; при небольших деформациях выполняется закон Гука. Модуль Юнга около 10 ГПа, предел прочности 100 МПа. Примерный вид кривых ползучести компактной костной ткани приведен на рис 5. Участок 0А соответствует быстрой деформации, АВ – ползучести.
Дата добавления: 2013-12-13; Просмотров: 634; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |