Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Закон сохранения импульса. Движение тела с переменной массой




ЛЕКЦИЯ 4

Импульс (количество движения): .

Второй закон (в формулировке самого Ньютона):

 

.

 

1. Закон сохранения импульса для двух взаимодействующих тел (см. рис. 1 лекции 3)

 

, . По третьему закону Ньютона . Отсюда

 

, . Значит полный импульс двух взаимодействующих тел

 

сохраняется:

 

.

 

2. Закон сохранения импульса для замкнутой системы из взаимодействующих

материальных точек

 

Замкнутая система – на каждую из материальных точек действуют лишь силы со стороны

других точек, входящих в систему (нет внешних сил).

Уравнения второго закона Ньютона для точек:

 

,

 

,

 

...............,

 

.

 

Складывая эти уравнения и группируя слагаемые в правой части, получаем

 

(по третьему закону Ньютона).

 

Значит полный импульс системы сохраняется: , .

 

 

3. Изменение полного импульса незамкнутой системы

В этом случае на каждую материальную точку действует внешняя сила . Проводя

аналогичное суммирование, получаем

 

, . (1)

 

Введем понятие центра масс системы материальных точек

 

, где - полная масса системы, - радиус-вектор -ой точки.

 

Тогда уравнение (1) можно записать в виде

 

.

 

4. Импульс силы. Движение тела с переменной массой.

 

Удобно использовать еще одну форму записи второго закона Ньютона

 

. (2)

 

Величина называется импульсом силы.

Рассмотрим реактивное движение ракеты с учетом изменения ее массы из-за сгорания топлива. На рис. 1 представлены величины для ракеты и продуктов сгорания (индекс “г”) в момент времени . Пусть в момент масса ракеты равна , а скорость . В момент скорость ракеты равна , а масса - .

Тогда уравнение (2) для ракеты можно представить в виде:

 

.

 

Отсюда, с точностью до величин первого порядка малости, получим

 

. (3)

 

Уравнение (2) для продуктов сгорания:

 

, (4)

 

где - скорость продуктов сгорания относительно ракеты. Так как , то из уравнений (3), (4) следует, что

 

или .

 

Последнее уравнение называется уравнением Мещерского. В проекции на направление движения ракеты получим

 

или .

 

После интегрирования приходим к формуле Циолковского

. (5)

 

Эта формула сыграла очень важную роль в истории космонавтики. Она позволяет оценить количество топлива необходимого для космических полетов. Можно, например, провести такую оценку для полета за пределы солнечной системы. Минимальное значение скорости, которую должна в этом случае развить ракета равно (третья космическая скорость). Современное химическое топливо дает значение . Тогда из формулы (5) получим

 

.

 

Для полета туда и обратно необходимо значение . Однако, скорости недостаточно для полета к другим звездам за разумные промежутки времени. От ближайшей к нам звезды α-Центавра свет доходит до Земли за 4 года. Следовательно, ракета должна развивать скорость сравнимую со скоростью света. С учетом прогресса в области разработки новых видов топлива возьмем завышенное значение . Тогда при получим

 

.

 

Нереальность такой величины очевидна по той причине, что масса всей нашей Галактики составляет ≈ 1041 кг. Один из гипотетических вариантов осуществления межзвездных полетов предполагает использование фотонных ракетных двигателей со значением . Однако, до практической реализации таких идей еще далеко.

 




Поделиться с друзьями:


Дата добавления: 2013-12-13; Просмотров: 493; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.