Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Стационарное течение жидкостей и газов

ЛЕКЦИЯ 25

 

Существует два основных метода описания течения жидкостей и газов (далее будем гово-рить только о жидкостях). Это метод Лагранжа, в котором задаются координаты и скорости каждой частицы жидкости, и метод Эйлера, в котором исследуется зависимость от коорди-нат и времени скорости потока жидкости . Мы будем вести рассмотрение в рамках метода Эйлера. Определим несколько важных понятий в таком описании.

 

Линии тока – линии, касательные к которым в каждой точке совпадают с направлением скорости жидкости (рис. 1). Густота линий тока пропорциональна скорости жидкости в данной части потока.

Трубка тока – часть жидкости, ограниченная линиями тока. Такое определение означает, что частицы жидкости никогда не пересекают стенок трубки тока.

Стационарное течение – скорость жидкости не зависит от времени в каждой точке пространства.

 

Рассмотрим тонкую трубку тока (по сечению трубки) в идеальной несжимаемой жидкости. При этом количество жидкости между двумя произвольными сечениями и должно оставаться постоянным. Следовательно, через и за 1 сек должно проходить одинаковое количество жидкости, то есть

 

, или .

 

Это утверждение называется теоремой о неразрывности струи. Из него, в частности, следует, что если сечение трубки тока переменно, то жидкость движется с ускоре-нием. Это означает, что вдоль трубки тока изменяется давление жидкости. Получим связь между скоростью жидкости и давлением с учетом влия-ния силы тяжести. Для этого снова рассмотрим тонкую трубку тока с двумя сечениями на высотах и . За время пройдут объемы жидкости

 

.

 

Изменение за время энергии объема жидкости, заключенного в начальный момент между и , равно разности энергий малых объемов

 

 

Это изменение равно работе сил давления

 

.

 

Приравнивая друг другу два последних выражения, получаем

 

.

 

В пределе при , объемы стягиваются в точки, а трубка тока переходит в линию тока. Таком образом на заданной линии тока выполняется уравнение Бернулли

 

 

Течение вязкой жидкости.

 

При движении слоев жидкости друг относительно друга между ними возникают силы вязкого трения. Они связаны с переходом молекул из одного слоя в другой и их взаимодействием. Рассмотрим опыт Ньютона, с помощью которого был получен закон для сил вязкости (рис. 4). В этом опыте тонкая пластина с площадью двигалась под действием силы по поверхности жидкости с постоянной скоростью . Глубина жидкости в сосуде равна . Сила вязкости , действующая на пластину, равна по величине и противоположна внешней силе. На основании проведенных измерений Ньютон сформулировал следующий закон:

 

.

 

Коэффициент в этой формуле зависит только от свойств жидкости и называется коэффи-циентом вязкости. Его размерность в СИ , а в СГС - 1 Пуаз. В приближении идеальной жидкости мы полагаем .

 

Из опыта следует, что вблизи пластины скорость жидкости близка к . Она спадает с глубиной по линейному закону, обращаясь в нуль на дне сосуда. Если направить ось вверх, а начало координат поместить на дне сосуда, то распределение проекции скорости на ось можно представить в виде (рис. 4):

 

.

 

В общем случае, при изменении скорости потока вдоль направления , проекция на ось силы вязкого трения, действующей между слоями с площадью может выражена как

 

.

 

Знак “-“ показывает, что слой с большей скоростью тормозится слоем с меньшей скоростью.

 

В качестве примера использования закона вязкого трения Ньютона рассмотрим течение вязкой несжимаемой жидкости в цилиндрической трубе длины и радиуса . Из условия несжимаемости следует, что скорость жидкости не меняется в направлении движения. Однако, она может изменяться по радиусу трубы. Выделим мысленно тонкий цилиндрический объем жидкости радиуса и высоты , ось которого совпадает с осью трубы (рис. 5). На боковую поверхность выделенного цилиндра действует сила вязкого трения

 

,

 

а на его основания – сила разности давлений

 

.

 

При стационарном течении . Отсюда получаем

 

.

 

Последнее равенство вытекает из независимости от . Здесь , - давления на левом и правом концах трубы соответственно (). Производя интегрирование с учетом граничного условия , получим

 

.

 

Из этого выражения видно, что на оси трубы скорость достигает максимального значения

 

 

и спадает по квадратичному закону до нуля при удалении от оси. Введем еще одно важное понятие.

Расход жидкости – количество жидкости, протекающее за единицу времени через поперечное сечение трубы.

С помощью выражения для и суммирования потоков по тонким кольцевым сечениям радиуса и ширины приходим к формуле Пуазейля

 

.

 

 

<== предыдущая лекция | следующая лекция ==>
Упругие свойства жидкостей и газов | Ламинарное и турбулентное течения. Движение тел в жидкостях и газах
Поделиться с друзьями:


Дата добавления: 2013-12-13; Просмотров: 695; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.025 сек.