КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Прямая и обратная геодезические задачи
Прямая геодезическая задача формулируется следующим образом: даны координаты некоторой начальной точки А, а также направление и расстояние от точки А к точке В. Необходимо определить координаты точки В. При этом в геодезии всегда имеется в виду, что задано направление кратчайшей линии и минимальное расстояние между точками. В навигации в аналогичной задаче, называемой счислением пути, обычно подразумеваются заданными направление локсодромии и ее длина. Кроме того, в обеих интерпретациях, в зависимости от величины заданного расстояния S0 и требуемой точности расчета координат φ1 и λ1, эта задача может решаться на эллипсоиде (с учетом сферичности Земли), на сфере или на плоскости. При больших расстояниях между точками прямая геодезическая задача решается на эллипсоиде или сфере. В геодезии координаты пунктов и азимуты вычисляются с точностью до 0,001΄. Это возможно лишь с учетом сфероидичности Земли на основе применения численных методов интегрирования системы уравнений (2.16)÷(2.18). В судовождении, как правило, достаточная точность (до 0,1') обеспечивается использованием формул сферической тригонометрии. Рассмотрим сферический треугольник АРВ (рис.7), образованный дугами меридианов в начальной и конечной точек, равными900-φ0 и 900-φ1, а также соединяющей длиной D0. Сферический угол при полюсе РN равен разности долгот λ1 – λ0, а угол между северной частью меридиана начальной точки и ортодромией равен А0 (иногда его обозначают П0 или ). Известными являются величины φ0, λ0, Α0 и D0. Для определения широты φ1 можно воспользоваться теоремой косинуса стороны сферического треугольника, согласно которой , откуда Долгота λ1может быть найдена как с использованием уже рассчитанной широты φ1, так и независимо от φ1. Рассмотрим независимое решение, которое выполняется с помощью теоремы котангенсов. , откуда . Для расчетов на калькуляторе эта формула преобразуется так, чтобы использовались только функции синуса, косинуса и тангенса: . В задаче счисления пути, близкой по сути к прямой геодезической задаче, заданы координаты начальной точки φ0 и λ0, направление пути и пройденное расстояние S0. Определение координат φ1 и λ1 конечной (или текущей точки производится исходя из уравнений локсодромии на сфере где главные радиусы кривизны Ν1 и Ν для любой точки поверхности равны радиусу сферы R (см. уравнения (23) и (24)): ; (2.24) . (2.25) Интегрирование уравнения (2.24) не представляет затруднений, так как его правая часть является постоянной величиной . Если расстояние Ѕ0 выражено в морских милях, то разность широт по этой формуле получается в радианах. Для перехода к угловым минутам необходимо это значение разделить на arc1´, а так как R arc1´=1, то разность широт в минутах находят по формуле . Уравнение (32) содержит в правой части переменную величину φ. Интегрирование его можно выполнить по аналогии с выводом уравнения локсодромии (см. п.3.4.). В результате получается формула (2.21) с вместо А и без второго слагаемого в квадратных скобках: (2.26) При значениях близких к 900 или 2700 этой формулой воспользоваться нельзя, т.к. tg-¥. Но при этом величина φ практически не изменяется. Считая φ постоянным, равным φ0, получаем следующее решение уравнения (2.25) причем sin= 1 при = 900 и sin= -1 при = 2700. Обе последние формулы дают разность долгот в радианах. Переход к угловым минутам производится делением этих значений на arc1´=1/3437,75, поэтому для практического использования эти формулы записываются в виде: (2.27) при |K0-90|≥1º и |K0-270|≥1º; λ1 – λ0 = S0 / cosφ0 при |K0-90|<1º; λ1 – λ0 = - S0 / cosφ0 при |K0-270|<1º; При малых расстояниях между начальной и конечной точками локсодромия и ортодромия практически сливаются в одну линию и рассмотренная задача в навигации обычно решается графически путем построения на карте. Обратная геодезическая задача формулируется так: даны координаты точек А(φ0, λ0) и В(φ1, λ1); определить направление и расстоянию от А к точке В. В большинстве случаев кратчайшее расстояние между двумя точками на поверхности Земли и направление кратчайшей линии можно рассчитать с достаточной для целей навигации точностью по формулам сферической тригонометрии. В сферическом треугольнике АРΝВ (см. рис.7) при этом известны дуги меридианов, равные 90º - φ0 и 90º - φ1, а также угол между ними, λ1 – λ0. Ортодромическое расстояние D0 находится по формуле косинуса стороны с учетом тождеств cos(90 - φ0) =sinφ0, sin(90 – φ0) = cosφ0 и т.п.: cosD0=sinφ0 sinφ1 + cosφ0 cosφ1 cos(λ1 – λ0). (2.28) Если требуется повышенная точность определения кратчайшего расстояния между точками, то следует исправить величину D0 поправкой за сфероидичность Земли, которую можно рассчитать по формуле Андуайе-Ламберта , (2.29) где ; . В приведенной формуле величина D0, не являющаяся аргументом тригонометрических функций, должна быть выражена в радианах. Величина ΔD получается в таких же единицах длины, в каких задана большая полуось земного сфероида. Если - в метрах, то для представления ΔD в милях необходимо разделить результат на 1852. Исправляемое расстояние D0 относится к сфере с радиусом, равным . Поэтому расстояние D0 (в милях) определяется как произведение угла D0 (в радианах) на (в милях). Длина геодезической линии DГ = D0 + ΔD. Направление кратчайшей линии от точки А к точке В в навигационных задачах можно всегда считать совпадающим с направлением ортодромии и находить по формуле котангенсов , откуда . Для вычислений на калькуляторе эту формулу целесообразно представить в виде . В навигации существует задача расчета плавания по локсодромии, в которой по координатам двух точек требуется определить курс и протяженность пути S0 из одной точки в другую. Такая задача с достаточной точностью решается на основе полученных ранее уравнений локсодромии на сфере (см. формулы (2.27)¸(2.29)). Для нахождения локсодромического курса К0 из точки А(j0, l0) в точку В(j1, l1) рассчитывается величина , (2.30) где разность долгот l1 - l0 выражается в угловых минутах. Величина находится в пределах от –90 до 900. Переход от к углу курса производится исходя из соотношения широт и долгот начальной и конечной точек: = при j1 > φ0; λ1 > 0; = +1800 при j1 < φ0; = +3600 при j1 > φ0; l1 < l0. Если локсодромия пересекает меридиан, соответствующий λ = 1800, то во всех приведенных соотношениях нужно увеличить западную долготу на 3600. Например, если движется в западном направлении и λ0 = -1700, то нужно считать λ0 = 1900; если судно движется в восточном направлении иλ1 = -1600, то нужно принимать λ1 = 2000. При j0 = φ1 расчет по формуле (2.30) приводит к неопределенности, т.к. аргумент арктангенса стремится к бесконечности. В таких случаях локсодромический курс с точностью до 0,50 принимается равным 900 при движении судна на восток (l1 > l0) и = 2700 при движении на запад (l1 < l0). Локсодромическое расстояние S0 можно найти из уравнения (33) по известной разности широт j1 - φ0 и рассчитанному курсу : . Здесь j1 - φ0 - в угловых минутах, а S0 – в милях. При близких к 90 или 2700 |cos| → 0 и при расчетах по формуле (35) и (36), вычислять S0 по формуле . На основании сравнения локсодромического и ортодромического расстояния между заданными точками делается вывод о целесообразности плавания по ортодромии и выбирается более рациональный путь судна.
Дата добавления: 2013-12-13; Просмотров: 3037; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |