Поиску специфических веществ, ответственных за хранение информации — "информационных молекул", посвящено немало исследований. Исходно эти исследования опирались на предположение, что все этапы формирования, удержания и воспроизведения энграмм можно представить в виде последовательности биохимических процессов.
"Молекулы памяти". Первые гипотезы, связывающие запечатление информации с биохимическими изменениями в нервной ткани, родились на основе широко известных в 60-е гг. опытов Г. Хидена, которые показали, что образование следов памяти сопровождается изменениями свойств РНК и белка в нейронах. Выяснилось, что раздражение нервной клетки увеличивает в ней содержание РНК и оставляет длительные биохимические следы, сообщающие клетке способность резонировать в ответ на повторные действия одних и тех же раздражителей. Таким образом, было установлено, что РНК играет важную роль в механизмах формирования и сохранения следов памяти. Однако в более поздних работах было показано, что в консолидации энграмм памяти ведущую роль играет ДНК, которая может служить хранилищем не только генетической, но и приобретенной информации, а РНК обеспечивает передачу специфического информационного кода. Высказывалось даже предположение, что неспособность зрелых нейронов делиться имеет своей целью предотвратить разрушение приобретенной информации, хранящейся в ДНК нейрона. Эти открытия имели большой научный и общественный резонанс. Некоторые исследователи, например, увлеклись идеей улучшения памяти путем введения этих биохимических компонентов в рацион питания. Однако, если иметь в виду, что крупные молекулы такого типа распадаются в кишечнике на составляющие их аминокислоты до включения их в обмен веществ потребителя, надежных результатов здесь получить было невозможно. Другим примером той же логики служили попытки переноса ("транспорта памяти") от обученных животных к необученным. Методически это осуществлялась с помощью инъекций мозгового субстрата животного-донора, обученного простым навыкам, животному-реципиенту, ранее не обучавшемуся. Наибольшую популярность в связи с этим приобрели эксперименты Г. Унгара, который предпринял попытку выделить особое вещество — пептид "скотофобин", передающий информацию о страхе перед темнотой. Многочисленные проверки, последовавшие за этим открытием, не дали положительных результатов. Итак, концепции биохимического кодирования индивидуального опыта в памяти, опираются на две группы фактов: 1) образование в мозге при обучении новых биохимических факторов (например, "пептидов памяти"); 2) возможность передачи приобретенной информации необученному мозгу с помощью этих факторов. Однако идея существования биохимических факторов, способных к сохранению и переносу информации, большинством исследователей воспринимается критически. В настоящее время считается, что гипотеза молекулярного кодирования индивидуального опыта не имеет прямых фактических доказательств. Несмотря на то, что установлена существенная роль нуклеиновых кислот и белков в механизмах научения и памяти, предполагается, что принимающие участие в формировании новой ассоциативной связи РНК и белки специфичны лишь по отношению к функциональному изменению участвующих в процессе синапсов и неспецифичны по отношению к самой информации.
Медиаторные системы. Медиаторам — химическим посредникам в синаптической передаче информации — придается большое значение в обеспечении механизмов долговременной памяти. Основные медиаторные системы головного мозга - холинэргическая и моноаминоэргическая (включает норадреноэргическую, дофаминэргическую и серотонинэргическую) — принимают самое непосредственное участие в обучении и формировании энграмм памяти. Так, экспериментально установлено, что уменьшение количества норадреналина замедляет обучение, вызывает амнезию и нарушает извлечение следов из памяти. Р.И. Кругликов (1986) разработал концепцию, в соответствии с которой в основе долговременной памяти лежат сложные структурнохимические преобразования на системном и клеточном уровнях головного мозга. При этом холинэргическая система мозга обеспечивает информационную составляющую процесса обучения. Моноаминоэргические системы мозга в большей степени связаны с обеспечением подкрепляющих и мотивационных составляющих процессов обучения и памяти. Показано, что под влиянием обучения увеличивается количество холинорецепторов, т.е. рецепторов, расположенных на теле нейрона и отвечающих за обнаружение медиатора ацетилхолина. В процессе образования условного рефлекса повышается чувствительность соответствующих нейронов к ацетилхолин у, что облегчает обучение, ускоряет запоминание и способствует более быстрому извлечению следа из памяти. В то же время вещества, препятствующие действию ацетилхолина, нарушают обучение и воспроизведение, вызывая амнезию (потерю памяти). Важно подчеркнуть, что холинэргическая система испытывает на себе модулирующее влияние со стороны моноамионоэргической системы. Под действием этих влияний может изменяться активность холинэргических синапсов и запускаться цепь биохимических внутриклеточных процессов, приводящих к более эффективному образованию энграмм.
Значение биохимических исследований памяти. Биохимические методы, позволяющие проникнуть в последовательность процессов, разыгрывающихся в синаптических мембранах с последующим синтезом новых белков, привлекают многих исследователей памяти. На этом пути ожидаются новые яркие открытия. Предполагается, например, что для различных видов памяти в ближайшем будущем будут выявлены различия в биохимических процессах. Тем не менее следует подчеркнуть, что интенсивные биохимические исследования привели к явной переоценке и автономизации клеточно-молекулярного уровня изучения механизмов памяти. Как указывает С. Роуз, эксперименты, проводимые только на клеточном уровне, слишком ограничены, и, по-видимому, не способны ответить на вопрос — как мозг человека запоминает, например, сложные симфонические партитуры, или извлекает из памяти данные, необходимые для разгадывания простого кроссворда (см. Хрестомат. 7.3). Для более полного знания о специфике функционирования процессов памяти необходим переход на уровень сложных мозговых систем, где многие нейроны соединены между собой морфологическими и функциональными связями. При этом психофизиологические исследования на здоровых людях позволяют изучать процессы переработки и хранения информации, а изучение больных с различного рода амнезиями, возникающими после повреждения мозга, позволяют глубже проникать в тайны памяти. Память нельзя рассматривать как нечто статичное, находящееся строго в одном месте или в небольшой группе клеток. Память существует в динамичной и относительно распределенной форме. При этом мозг действует как функциональная система, насыщенная разнообразными связями, которые лежат в основе регуляции процессов памяти.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав!Последнее добавление