КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Инструментальные средства построения экспертных систем
Классификация экспертных систем Экспертные системы Стратегии получения знаний Существует несколько стратегий получения знаний. Наиболее распространенные: · приобретение; · извлечение; · формирование. посредством диалога эксперта и специальной программы (при этом структура знаний заранее закладывается в программу). Эта стратегия требует существенной предварительной проработки предметной области. Системы приобретения знаний действительно приобретают готовые фрагменты знаний в соответствии со структурами, заложенными разработчиками систем. Большинство этих инструментальных средств специально ориентировано на конкретные экспертные системы с жёстко обозначенной предметной областью и моделью представления знаний, т.е. не являются универсальными. Термин извлечение знаний касается непосредственного живого контакта инженера по знаниям и источника знаний. Извлечение знаний – это процедура взаимодействия эксперта с источником знаний, в результате которой становятся явными процесс рассуждений специалистов при принятии решения и структура их представлений о предметной области. Термин формирование знаний традиционно закрепился за чрезвычайно перспективной и активно развивающейся областью инженерии знаний, которая занимается разработкой моделей, методов и алгоритмов анализа данных для получения знаний и обучения. Эта область включает индуктивные модели формирования гипотез на основе обучающих выборок, обучение по аналогии и другие методы. Класс «экспертные системы» сегодня объединяет несколько тысяч различных программных комплексов, которые можно классифицировать по различным критериям. Классификация по решаемой задаче. Интерпретация данных. Это одна из традиционных задач для экспертных систем. Под интерпретацией понимается определение смысла данных, результаты которого должны быть согласованными и корректными. Обычно предусматривается многовариантный анализ данных (обнаружение и идентификация различных типов океанских судов – SIAP; определение основных свойств личности по результатам психодиагностического тестирования в системах АВТАНТЕСТ и МИКРОЛЮШЕР и др.). Диагностика. Под диагностикой понимается обнаружение неисправности в некоторой системе. Неисправность – это отклонение от нормы. Такая трактовка позволяет с единых теоретических позиций рассматривать и неисправность оборудования в технических системах, и заболевания живых организмов, и всевозможные природные аномалии. Важной спецификой является необходимость понимания функциональной структуры «анатомии» диагностирующей системы (диагностика и терапия сужения коронарных сосудов – ANGY; диагностика ошибок в аппаратуре и математическом обеспечении ЭВМ – система CRIB и др.). Мониторинг. Основная задача мониторинга – непрерывная интерпретация данных в реальном масштабе времени и сигнализация о выходе тех или иных параметров за допустимые пределы. Главные проблемы – «пропуск» тревожной ситуации и инверсная задача «ложного» срабатывания. Сложность этих проблем в размытости симптомов тревожных ситуаций и необходимость учёта временного контекста (контроль за работой электростанций СПРИНТ, помощь диспетчерам атомного реактора – REACTOR; контроль аварийных датчиков на химическом заводе – FALCON и др.). Проектирование. Проектирование состоит в подготовке спецификаций на создание «объектов» с заранее определёнными свойствами. Под спецификацией понимается весь набор необходимых документов – чертёж, пояснительная записка и т.д. Основные проблемы здесь – получение чёткого структурного описания знаний об объекте и проблема «следа». Для организации эффективного проектирования и, в ещё большей степени, перепроектирования необходимо формировать не только сами проектные решения, но и мотивы их принятия. Таким образом, в задачах проектирования тесно связываются два основных процесса, выполняемых в рамках соответствующей ЭС: процесс вывода решения и процесс объяснения (проектирование конфигураций ЭВМ VAX 11/780 в системе XCON (или R1), проектирование БИС CADHELP; синтез электрических цепей – SYN и др.). Прогнозирование. Прогнозирующие системы логически выводят вероятные следствия из заданных ситуаций. В прогнозирующей системе обычно используется параметрическая динамическая модель, в которой значения параметров «подгоняются» под заданную ситуацию. Выводимые из этой модели следствия составляют основу для прогнозов с вероятностными оценками (предсказание погоды – система WILLARD; оценки будущего урожая – PLANT; прогнозы в экономике – ECON и др.). Планирование. Под планированием понимается нахождение планов действий, относящихся к объектам, способным выполнять некоторые функции. В таких ЭС используются модели поведения реальных объектов с тем, чтобы логически вывести последствия планируемой деятельности (планирование поведения робота – STRIPS; планирование промышленных заказов – ISIS; планирование эксперимента – MOLGEN и др.). Обучение. Системы обучения диагностируют ошибки при изучении какой-либо дисциплины с помощью ЭВМ и подсказывают правильные решения. Они аккумулируют знания о гипотетическом «ученике» и его характерных ошибках, затем в работе способны диагностировать слабости в знаниях обучаемых и находить соответствующие средства для их ликвидации. Кроме того, они планируют акт общения с учеником в зависимости от успехов ученика с целью передачи знаний (обучение языку программирования Лисп в системе «Учитель Лиспа»; система PROUST – обучение языку Паскаль и др.). В общем случае все системы, основанные на знаниях, можно подразделить на системы, решающие задачи анализа, и на системы, решающие задачи синтеза. Основное отличие задач анализа от задач синтеза заключается в следующем: если в задачах анализа множество решений может быть перечислено и включено в систему, то в задачах синтеза множество решений потенциально строится из решений компонентов или подпроблем. Задача анализа – это интерпретация данных, диагностика; к задачам синтеза относятся проектирование, планирование. Комбинированные задачи: обучение, мониторинг, прогнозирование. Классификация по связи с реальным временем. Статические ЭС разрабатываются в предметных областях, в которых база знаний и интерпретируемые данные не меняются во времени. Они стабильны (диагностика неисправностей в автомобиле). Квазидинамические ЭС интерпретируют ситуацию, которая меняется с некоторым фиксированным интервалом времени. Динамические ЭС работают в сопряжении с датчиками объектов в режиме реального времени с непрерывной интерпретацией поступаемых данных. Классификация по степени интеграции с другими программами. Автономные ЭС работают непосредственно в режиме консультаций с пользователем для специфически «экспертных» задач, для решения которых не требуется привлекать традиционные методы обработки данных (расчёты, моделирование и т.д.). Гибридные ЭС представляют программный комплекс, агрегирующий стандартные пакеты прикладных программ (например, математическую статистику, линейное программирование или системы управления базами данных) и средства манипулирования знаниями. Это может быть интеллектуальная надстройка над ППП или интегрированная среда для решения сложной задачи с элементами экспертных знаний. Несмотря на внешнюю привлекательность гибридного подхода, следует отметить, что разработка таких систем являет собой задачу, на порядок более сложную, чем разработка автономной ЭС. Стыковка не просто разных пакетов, а разных методологий (что происходит в гибридных системах) порождает целый комплекс теоретических и практических трудностей. Традиционные языки программирования. В эту группу инструментальных средств входят традиционные языки программирования (С, C++, Basic, Pascal, Fortran и т.д.), ориентированные в основном на численные алгоритмы и слабо подходящие для работы с символьными и логическими данными. Поэтому создание систем искусственного интеллекта на основе этих языков требует большой работы программистов. Однако большим достоинством этих языков является высокая эффективность, связанная с их близостью к традиционной машинной архитектуре. Кроме того, использование традиционных языков программирования позволяет включать интеллектуальные подсистемы (например, интегрированные экспертные системы) в крупные программные комплексы общего назначения. Среди традиционных языков наиболее удобными считаются объектно-ориентированные (Pascal, C++). Это связано с тем, что парадигма объектно-ориентированного программирования тесно связана с фреймовой моделью представления знаний. Кроме того, традиционные языки программирования используются для создания других классов инструментальных средств искусственного интеллекта. Языки искусственного интеллекта. Это прежде всего Лисп (LISP) и Пролог (Prolog) – наиболее распространённые языки, предназначенные для решения задач искусственного интеллекта. Универсальность этих языков меньшая, нежели традиционных языков, но её потерю языки искусственного интеллекта компенсируют богатыми возможностями по работе с символьными и логическими данными, что крайне важно для задач искусственного интеллекта. На основе языков искусственного интеллекта создаются специализированные компьютеры (например, Лисп-машины), предназначенные для решения задач искусственного интеллекта. Недостаток этих языков – неприменимость для создания гибридных экспертных систем. Специальный программный инструментарий. В эту группу программных средств искусственного интеллекта входят специальные инструментарии общего назначения. Как правило, это библиотеки и надстройки над языком искусственного интеллекта Лисп: KEE (Knowledge Engineering Environment), FRL (Frame Representation Language), KRL (Knowledge Representation Language), ARTS и другие, позволяющие пользователям работать с заготовками экспертных систем на более высоком уровне, нежели это возможно в обычных языках искусственного интеллекта. «Оболочки». Под «оболочками» (shells) понимают «пустые» версии существующих экспертных систем, т.е. готовые экспертные системы без базы знаний. Примером такой оболочки может служить EMYCIN (Empty MYCIN – пустой MYCIN), которая представляет собой незаполненную экспертную систему MYCIN. Достоинство оболочек в том, что они вообще не требуют работы программистов для создания готовой экспертной системы. Требуется только специалисты в предметной области для заполнения базы знаний. Однако если некоторая предметная область плохо укладывается в модель, используемую в некоторой оболочке, заполнить базу знаний в этом случае весьма не просто.
Дата добавления: 2013-12-14; Просмотров: 1337; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |