Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Р-электронами




СВОЙСТВА ЭЛЕМЕНТОВ С ВАЛЕНТНЫМИ

Если свойства s-металлов характеризуются плавным изменением свойств в пределах каждой группы, а свойства d-металлов также плавно изменяются в пределах каждого ряда, то начиная с III А группы наблюдаются резкие изменения свойств элементов в каждой группе от типично металлических к типично неметаллическим. С увеличением числа электронов на внешнем уровне атомов уменьшается восстановительная способность атомов и усиливается их окислительная активность (увеличивается электроотрицательность, сродство к электрону, энергия ионизации элементов). В группах периодической системы сверху вниз у р-элементов усиливаются восстановительные свойства.

Элементы главной подгруппы III группы – алюминий, галлий, индий, таллий - являются р-элементами с электронной структурой внешнего электронного уровня s²р¹. При возбуждении один из s-электронов переходит на р-подуровень. Поэтому для них характерно трехвалентное состояние, а для таллия также и одновалентное. Al, Ga, In, Tl – серебристо-белые, сравнительно мягкие и пластичные металлы, сходные по своим химическим свойствам. На воздухе все они покрываются плотной оксидной пленкой. Оксиды и гидроксиды алюминия, галлия, индия амфотерны, а оксиды таллия - Tl2О, Tl2О3 – характеризуются только основными свойствами.

Al не растворяется в концентрированной азотной кислоте, Al и In хорошо растворяются в растворе щелочи:

 

2Al + 6КОН + 6Н2О = 3Н2 + 2К3[Al(ОН)6]

гексагидроксоалюминат калия

 

Соли алюминия сильных кислот (AlCl3, Al(NO3)3, Al2(SO4)3) в растворе гидролизуются с образованием кислой среды, соли слабых кислот, например, Al2S3, Al2(СO3)3, гидролизуются полностью и в водном растворе не существуют.

Очень широкое применение находят некоторые сплавы алюминия – дюралюминий (дюраль). Из сплава алюминия с магнием (магналия) изготавливают конструкции морских и речных судов, танкеры для перевозки продуктов питания; сплавы алюминия с магнием и кремнием (пеналюминий) применяют в строительстве.

Очень важным является применение алюминия для алитирования – насыщения поверхности стальных или чугунных изделий алюминием.

AlCl3 – хлорид алюминия - является катализатором при переработке нефти и в различных органических синтезах; с помощью Al2(SO4)3 очищают воду от взвешенных частиц и бактерий.

Низкая температура плавления галлия (29,8°С) и высокая температура кипения (2237°С) позволяют применять этот металл для изготовления высокотемпературных термометров и для получения легкоплавких сплавов.

Таллий используют в полупроводниковой технике, из индия изготавливают высококачественные зеркала прожекторов.

Еще менее очевидным становится сходство между элементами в группе IV А (С, Si, Ge, Sn, Pb). Углерод представляет собой неметалл, который почти всегда образует 4 ковалентные связи с другими элементами. Кремний – неметалл, обладающий некоторыми металлическими свойствами, включая серебристый блеск. Германий относится к числу металлоидов, а олово и свинец – металлы. С, Si, Ge образуют соединения преимущественно с ковалентной связью. Оксиды углерода (IV) и кремния (IV) – кислотные оксиды; оксиды германия, олова, свинца – амфотерные.

Олово и свинец – элементы IV группы периодической системы имеют (s²р²) электронную структуру внешнего уровня, проявляют положительные степени окисления +4 и +2. Существует олово в двух модификациях – белое олово и серое, явление превращения белого олова при температурах ниже 14°С в серое получило название оловянной чумы. Свинец – аналог олова, тяжелый металл. Он очень мягок и режется ножом. Олово и свинец с кислородом образуют оксиды МеО и МеО2, свинец может образовывать смешанные оксиды Pb3О4 (сурик) и Pb2О3.

С водой металлы Sn и Pb практически не реагируют, разбавленные соляная и серная кислоты почти не действуют на них; это связано со значительным перенапряжением выделения водорода на металлах. Растворяются металлы в концентрированных кислотах: H2SO4, HNO3, HCl.

 

Sn + 4H2SO4 = Sn(SO4)2 + 2SO2 + 4H2O

конц.

Pb + 3H2SO4 = Pb(HSO4)2 + SO2 + 2H2O

конц.

 

Sn + 4HNO3 = H2SnO3 + 4NO2 + H2O

β – оловянная кислота

 

Олово и свинец растворяются в щелочах с образованием гидроксостаннитов К2[Sn(OH)4] и гидроксоплюмбитов К2[Pb(OH)6].

Гидроксиды этих металлов Ме(ОН)2 и Ме(ОН)4 обладают амфотерными свойствами; с увеличением степени окисления металлов нарастают кислотные свойсва у гидроксидов. Известны α- и β-оловянные кислоты Н2SnO3 и ее соли – станнаты Na2SnO3; соли несуществующей в свободном состоянии свинцовой кислоты – плюмбаты.

Соединения двухвалентного олова и свинца - восстановители, четырехвалентные - окислители. Олово и свинец идут на получение сплавов (баббиты, припои и др.).

Олово используют для покрытия им изделий из железа, соприкасающихся с продуктами питания. Наибольшее количество свинца расходуется на изготовление оболочек кабелей и пластин аккумуляторов для защиты от γ-излучений при работе с радиоактивными веществами.

Атомы элементов V А группы (N, P, As, Sb, Bi) имеют на внешнем уровне по пять электронов (s²р³), из которых неспарены три

р-электрона. Такому состоянию отвечает степень окисления -3, например, в гидридах ЭН3. При возбуждении атомов валентных электронов становится 5 в состоянии s¹р³d¹ возбуждения, которому отвечает степень окисления элементов в соединениях +5.

Азот и фосфор чаще всего имеют степени окисления –3, +3 и +5. Для мышьяка и сурьмы наиболее важным является состояние окисления +3. Для висмута оно единственно возможно.

Азот и фосфор – типичные неметаллы, у мышьяка преобладают неметаллические свойства, у сурьмы в равной мере выражены неметаллические и металлические свойства, у висмута преобладают металлические свойства.

 

 

Сурьма и висмут при обычных условиях устойчивы к окислению на воздухе, к действию воды, но при нагревании активность их повышается, и они могут реагировать с галогенами. Оксиды сурьмы (III) и висмута (III) амфотерны:

 

Bi2O3 + 6KOH = 2K3BiO3 + 3H2O

 

Bi2O3 + 6HCl = 2BiCl3 + 3H2O

 

Многие соединения этой подгруппы обладают полупроводниковыми свойствами.

В группе VI А (О, S, Se, Te, Po) на внешнем уровне атомов этих элементов по шесть электронов (s²р4).

Кислород проявляет валентность равную 2, т.к. во внешнем уровне атома кислорода нет d-подуровня, а остальные элементы данной группы - валентности 2, 4, 6.

Окислительная активность элементов этой группы выражена сильнее, чем у элементов V А группы.

У элементов группы VII А утрачиваются все металлические свойства: все галогены – типичные неметаллы.

 




Поделиться с друзьями:


Дата добавления: 2013-12-14; Просмотров: 328; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.