Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Малюнок № 17. Фігури Ф і F




 

Для того, щоб виміряти площу фігур Ф і F, слід підрахувати число квадратів певного рангу. На практиці для цього використовують палетку, яка являє собою прозору плівку розбиту на одиничні квадрати. Поклавши палетку на геометричну фігуру, підраховуємо число квадратів та визначаємо площу. Так само, як і при безпосередньому вимірюванні довжини, процес підрахунку може бути або скінченним, або нескіченним. У першому випадку міра площі виражатиметься невід’ємним раціональним числом, а в другому – невід’ємним ірраціональним числом. Цілком зрозуміло, що щоразу визначати площу геометричної фігури безпосереднім підрахунком числа квадратів певного рангу дуже незручно, а тому в математиці для визначення площі певних геометричних фігур вивели формули для знаходження площі. Перед тим, як познайомитися з цими формулами, розглянемо кілька потрібних для їх виведення понять.

Означення: два многокутника називаються рівновеликими, якщо вони мають рівні площі.

Зазначимо, що рівновеликі многокутники не завжди рівні, наприклад: маємо два прямокутники із сторонами 2 см і 6 см та 3 см і 4 см. Хоча площі обох многокутників дорівнюють 12 см2, але вони не рівні. Розглянемо питання про те, чи можна за допомогою перетворення многокутників встановити їхню рівновеликість. Виявляється, що це завдання розв’язується позитивно. Таким геометричним еквівалентом є поняття рівноскладеності геометричних фігур.

Означення: два многокутника називаються рівноскладеними, якщо їх можна розкласти на одне й те саме число попарно рівних многокутників.

З’ясуємо, які властивості має відношення рівноскладеності. Оскільки кожний многокутник рівноскладений сам з собою, то відношення рівноскладеності рефлексивне. Якщо многокутник М1 рівноскладений многокутнику М2, то і многокутник М2 рівноскладений з многокутником М1. Отже, відношення рівноскладеності має властивість симетричності. Якщо многокутник М1 рівноскладений з многокутником М2, а многокутник М2 рівноскладений з многокутником М3, то многокутники М1 і М3 – рівноскладені. Отже, відношення рівноскладеності транзитивне. Таким чином, відношення рівноскладеності на множині многокутників є відношенням типу еквівалентності, бо має властивості рефлексивності, симетричності та транзитивності. За допомогою цього відношення множина всіх многокутників розбивається на класи еквівалентності, до кожного із яких відносяться рівноскладені між собою многокутники. Виявляється, що між відношеннями рівновеликості та рівноскладеності многокутників існує зв’язок, який зафіксовано в наступних теоремах.

Теорема 1: будь-які два рівноскладені многокутники рівновеликі.

Доведення:

Розглянемо два рівноскладені многокутники М і К. Відповідно до означення вони розкладуться на однакове число попарно рівних частин: М=М123+...+Мn і К=К123+...+Кn. Знайдемо площі многокутників М і К. S(М)=S(М1)+S(М2)+S(М3)+...+S(Мn) і S(К)=S(К1)+S(К2)+S(К3)+...+S(Кn). Оскільки многокутники М1, М2, М3,...,Мn і К1, К2, К3,...,Кn попарно рівні, то S(М1), S(М2), S(М3),...,S(Мn) і S(К1), S(К2), S(К3),...,S(Кn) – попарно однакові, а тому S(М)=S(К). Теорему доведено.

Теорема 2: будь-які два рівновеликі многокутники рівноскладені.

Доведення цієї теореми опустимо, бо воно аналогічне до попередньої. Зазначимо, що обидві теореми можна об’єднати в одну: “Для того, щоб будь-які два многокутники були рівновеликими, необхідно і достатньо, щоб вони були рівноскладеними”. Доведені і сформульовані теореми нададуть можливість значно спростити обґрунтування формул для обчислення площ окремих видів многокутників.

Оскільки основною одиницею вимірювання довжини у системі “SI” є 1 м, то основною одиницею вимірювання площі є 1 кв. м або 1 м2. Похідними одиницями вимірювання площі є наступні одиниці: 1 кв. дм (дм2)=0,01 м2=100 см2; 1 кв. см (см2)=0,0001 м2=100 мм2; 1 кв. мм (мм2)=0,000001 м2; 1 квадратний декаметр або 1 ар (а)=100 м2=0,01 га; 1 квадратний гектометр або 1 гектар (га)=10000 м2; 1 кв. км (км2)=1000000 м2. Аналогічно можна ввести позначення старовинних мір площі та встановити їхні співвідношення із сучасними мірами площі.

 




Поделиться с друзьями:


Дата добавления: 2013-12-14; Просмотров: 380; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.