КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Малюнок № 18
Провівши через точки поділу прямі, паралельні осям координат, ми отримаємо на площині ХОУ сітку квадратів нульового рангу. Нехай mе(АВ)=а і mе(АД)=b. Тоді на кожній стороні квадрата вміщуватиметься ціле число таких квадратів. Підрахувавши число квадратів, які покривають прямокутник АВСД, ми знайдемо площу прямокутника. Довжини сторін прямокутника АВСД можуть виражатися, по-перше, натуральними числами, по-друге, - довжина хоча б однієї із сторін прямокутника є раціональним числом, по-третє, - довжина хоча б однієї із сторін прямокутника є ірраціональним числом, тобто нескінченним неперіодичним десятковим дробом. У першому випадку число квадратів дорівнюватиме добутку чисел, які показують скільки одиничних відрізків вміщується у стороні. Отже, площа прямокутника в першому випадку дорівнює добутку довжин його суміжних сторін S=a×b. Якщо довжина хоча б однієї сторони прямокутника виражається раціональним числом, то побудуємо на площині ХОУ координатну сітку квадратів відповідного рангу. В цьому випадку на кожній стороні прямокутника вміщуватиметься ціле число квадратів відповідного рангу. Підрахуємо число таких квадратів, а оскільки довжини сторін цього прямокутника будуть виражатися десятковими дробами, то в цьому випадку число квадратів покриття дорівнюватиме добутку довжин суміжних сторін. Для прикладу нехай а=3,25, b=7,56. Тоді S=3,25×7,56=24,57. Нехай принаймні одна сторона прямокутника виражається ірраціональним числом, тобто нескінченним неперіодичним десятковим дробом. Тоді, якими б не були квадрати покриття певного рангу, принаймні на одній стороні прямокутника не вміщуватиметься їх ціле число. У цьому випадку число квадратів покриття доведеться підраховувати з недостачею, коли знайдемо число квадратів, які складаються тільки із внутрішніх точок прямокутника, або з надлишком – коли підрахуємо число квадратів певного рангу, які повністю покривають прямокутник АВСД. Якщо mе(АВ)=a і mе(АД)=b, то для знаходження площі прямокутника слід знайти добуток дійсних чисел, тобто S=a×b. Таким чином, теорему доведено повністю. Цілком зрозуміло, що ми для спрощення викладок лише описали доведення теореми в другому та третьому випадках. Користуючись цієї теоремою виведемо формули для обчислення площі деяких геометричних фігур. Теорема 4: площа прямокутного трикутника дорівнює півдобутку довжин його катетів. Доведення:
А Д
Дата добавления: 2013-12-14; Просмотров: 368; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |