Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Контактна особа

Заключение

III. Модель многоэлементного технического объекта

II. Диагностические модели технических объектов

Тема 4.4. Модели технических объектов, основные понятия.

Термінологічний словник

Література для студентів

План

Тема 3. Народна культура українців.

1.Культуротворча та культуроохоронна діяльність рідного краю

2.Національні герої України. Славетні українці

3.Методика проведення позакласних заходів

 

(основна)

1.Бібік Н.М. Громадянська освіта // Початкова школа. - №12. - 2002. - С.31-32.

2.Пометун О.І. та ін. Сучасний урок. Інтерактивні технології навчання: Наук. - метод. посібн. / О.І.Пометун, Л.В.Пироженко. За ред. О.І.Пометун. - К.: Видавництво А.С.К., 2004. - 192с.

3.Бех І.Д. Виховання особистості: У2 кн. Особистісно орієнтований підхід: теоретико-технологічні засади: Наук. видання. - К.: Либідь, 2003. - 280с.

4.Сімейно-побутова культура та домашня економіка: навчальний посібник / За ред. Т.Б.Гриценко, Т.Д.Іщенко, Т.Ф.Мельничук. - К.: Вища освіта, 2004. - 480с.

5.Закон Божий / За ред. Проторієрей Серафим Слобідський. - Київ, 2004. - 654с.

(додаткова)

7.Програма курсу "Я і Україна". Проект // Початкова освіта. - 2003. - 328. -С.3-6.

8.Савченко О.Я. Сучасний урок у початкових класах. -К.: Магістр-S, 1997.- 254с.

9.Бібік Н.М., Коваль Н.С. Зошит до підручника "Я і Україна" для 1 кл.- К.: Видавництво А.С.К., 2003. - 24с.

10.Бібік Н.М., Коваль Н.С. Зошит до підручника "Я і Україна. Віконечко": 1 кл./ Н.М.Бібік, Н.С.Коваль. - К.: КІМО, 2004. - 56с.

11.Бондарчук О.І. Психологія сім'ї: курс лекцій. - К., 2001. - 96с.

12.Вебер М. Соціологія. Загальноісторичні аналізи. Політика / Пер. з нім. О.Погорілого. - К., 1998. - 18с.

13.Грушевський М. Дитина в звичаях і віруваннях українського народу. - К., 2001.- 96с.

14.Конституція України: Прийнята на п'ятій сесії Верховної Ради України 28 червня 1996р. - к., 1997. - 80с.

15.Сімейне право України: Підручник / за ред. В.С.Гопанчука. - К.,2002. - 304с.

16.Мяловський А.В., Оганян Г.А. Культура побуту - сила нації: Книга корисних порад. - К.:, 2001. - 352с.

17.Богдан С.К. Мовний етикет українців: традиції і сучасність. - К., 1998. - 475с.

18.Історія української культури. - Т.1. - К., 2001. - 1135с.

19.Чмут Т.К.., Чайка Г.Л. Етика ділового спілкування: Нач. посібник. - К., 2003. - 223с.

20.Чмут Т.К., Чайка Г.Л., Лукашевич М.П., Осечинська І.Б. Етика ділового спілкування: Курс лекцій. - К., 1999. - 198с.

 

1.Зростання інтересу до питань культури останнім часом не є випадковим. Адже суспільний розвиток у цілому охоплює і розвиток духовний, іншими словами ­ культурний. Саме культура як скарбниця історичного досвіду постає в ролі важливого фактора невпинного розвитку людства (як духовного, так і матеріального).

 

2."Людина ­ найбільший скарб держави". Наша розмова піде про людей, якими пишається наша країна і яких ми по праву можемо назвати славетними українцями. Велич кожної країни ­ в людях, які в ній живуть. І особливо в тих, хто зробив значний внесок у розвиток історії, культури і науки. Багато видатних людей прославили нашу Україну.

 

3.

МЕТОДИКА РОЗРОБКИ СЦЕНАРІЮ

 

1. Сценарій - це детальна літературно-текстова й
організаційна розробка змісту і ходу будь-якої виховної справи,
зокрема - свята. У сценарії послідовно викладаються окремі
художні та реальні елементи дії, вказані способи переходу від
однієї частини дії до іншої, наводиться орієнтовний напрямок усіх
імпровізаційних виступів та інших акцій. У сценарій вводяться
художні твори, які будуть використані, чи уривки з них; у ньому
передбачаються засоби активізації учасників, планується
оформлення і спеціальне обладнання приміщень.

Відсутність ретельно розробленого сценарію, підміна його організаційним планом, який не розкриває змісту кожного елемента, може привести до неузгодженості окремих його частин, їх механічного з'єднання, збіднення виразних можливостей матеріалу і недостатньо яскравого розкриття ідеї.

2. Основні етапи роботи над сценарієм. Зазвичай, ця
робота починається із продумування ідейно-тематичної основи
справи, чіткого визначення її теми та ідеї, які тісно
взаємопов'язані, але різняться одна від одної. Тема - це коло
життєвих явищ, відібраних і висвітлених автором сценарію, або,
кажучи іншими словами, це те, про що автор хоче розповісти
учасникам справи. Ідея - це основна думка, оцінка подій, про які
йдеться у сценарії, чи, іншими словами, те, заради чого автор хоче
розповісти учасникам про щось.

Ідея сценарію слугує стрижнем для добору та організації документального й художнього матеріалу, вона попередньо визначає основний конфлікт дії, її композицію, диктує принцип відбору тих, хто виступатиме. Нечіткість ідеї, як правило, виявляється у нечіткості смислових акцентів справи.

Тема задається із самого початку, а до ідеї, як до головного висновку, сценарист і режисер повинні підвести учасників. Недоцільно подавати ідею в готовому вигляді, з самого початку.

Завдання полягає в тому, щоб змусити кожного включитися в події, самому осмислити ідею, якій підпорядковано розвиток дії. У такому творчому процесі глядач і стає активним учасником виховної справи.

Тема та ідея тісно пов'язані і разом створюють ідейно-тематичну основу театралізованої вистави, свята, ігрової програми тощо.

Однак, для створення сценарію визначити його тему та ідею недостатньо. У сценарії обов'язково має бути сюжет, тобто розвиток подій, вияв характерів у дії.

Пошуки яскравого, цікавого матеріалу для організації сюжету - невід'ємна частина роботи над сценарієм. Автори сценарію компонують матеріал так, щоб сюжет розвивався від події до події, у безперервній, логічно пов'язаній сценічній дії.

Розвиток сюжету неможливий у сценарії без визначення і розробки конфлікту, тобто основного для розвитку подій зіткнення інтересів, поглядів, прагнень. Конфлікт може виражатись у подоланні труднощів, перешкод.

Наступний крок - продумування композиції, тобто реалізація сюжету і конфлікту у сценічній дії, яка розвивається. Композиція є організацією дії, а значить вимагає відповідного логічного розміщенням матеріалу в ході сценарію. Композиція сценарію включає в себе: експозицію, зав'язку, розвиток дії (основну дію), кульмінацію і розв'язку.

Експозиція - це коротка розповідь про події, які передували виникненню конфлікту, що його викликали. Зазвичай, експозиція переростає у зав'язку - вони невіддільні. Експозиція і зав'язка мають бути чіткими, лаконічними. Вони несуть велике психологічне навантаження, так як "збирають" увагу глядача, готують до сприйняття дії, налаштовують на сприйняття. За своєю формою експозиція-зав'язка можуть бути надзвичайно різноманітними за формою вираження: віршована заставка, пісня, сценка з п'єси, фрагмент кінофільму, театралізована хода...

Наступна частина композиції - розвиток дії, чи основна дія, тобто зображення процесу боротьби, її перипетій, ланцюги подій і зіткнень, в яких вирішується конфлікт.

5. Алгоритм написання сценарію: загальні вимоги. Текст сценарію має бути викладений без помилок. Вимоги до комп'ютерного набору: шрифт - Times New Roman, розмір шрифту - 14, інтервал -1,5.

Текст, у якому йде мова про дії ведучих та учасників виховної справи, подається посередині рядка й виділяється курсивом (наприклад: Звучить лірична мелодія), крапка не ставиться. Зліва жирним шрифтом вказують дійових осіб (наприклад: Ведуча:), справа - текст їх слів. Текст сценарію має бути викладений за таким алгоритмом:

1. Вказати форму проведення виховної справи та її тему (наприклад: Новорічне свято „Найдорожчий скарб").

2. Вказати адресність, тобто - для дітей якої вікової категорії призначена справа (наприклад: Для учнів 5-6 класів; Для молодших школярів; Для старшокласників).

3. Вказати мету проведення: навчальну чи пізнавальну, розвиваючу, виховну (наприклад: познайомити молодших підлітків з напрямами живопису, сприяти їх пізнавальній активності, розвитку уваги, спостережливості, пам'яті, творчих здібностей, формуванню основ естетичної культури, естетичного досвіду).

4. Вказати наочне оформлення, його зміст, кількість (наприклад: плакат „Книга - джерело знань", табло „Рахуй до ста" (Зшт.), аркуші паперу (Зшт.), журнал „Барвінок" (3 примірники), портрети художників: вказати прізвища й ініціали, надувні кульки (15 штук), букети квітів, вишиті рушники тощо).

5. Музичне оформлення передбачає перелік музичних творів та зазначення їх авторів (наприклад: „Вальс квітів" П.І.Чайковського, „Пісня про рушник": музика ГМайбороди, слова А.Малишка).

6. Обладнання включає усі технічні та інші засоби, необхідні для проведення виховної справи (магнітофон, акустична система, мікрофон, телевізор, проектор, декорації, стелаж для виставки, мольберти, трибуна, музичні інструменти, вази для квітів тощо).

7. Окремо вказують різного роду реквізит та аксесуари для проведення ігор та конкурсів: склянки, ложки, мотузки, маски, пов'язки для очей, дрібні предмети, таці, нитки, клаптики тканини, пластмасові пляшки тощо; спортивний інвентар: м'ячі, кеглі, обручі, гімнастичні палки тощо.

8. Сценарій ходу виховної справи (свята, ігрової програми, турніру, усного журналу, години спілкування тощо) викладається детально у такій послідовності: вступ (визначається актуальність теми, мотивується діяльність), основна частина (її зміст спрямований на реалізацію визначених педагогічних завдань, передбачає залучення учнів до різних видів діяльності), заключна частина (підведення підсумків, допомагає з'ясувати рівень розуміння й усвідомлення основних ідей справи). У ході сценарію слід виділити усі види роботи (розповідь, інтерв'ю, демонстрація, перегляд фрагментів фільму, гра, бесіда, прослуховування музичних творів) й детально їх описати. Якщо виконується пісня, вірш чи прозовий твір -слід подати їх повний текст. Якщо проводиться гра -потрібно вказати завдання її учасникам, правила та умови гри. Якщо письмове оформлення є детальним, то на початку викладу посередині робиться запис: „Хід свята (ігрової програми тощо)", якщо подається розгорнутий план проведення виховної справи (наприклад, не можна наперед передбачити, які потрібно буде вводити коментарі у ході інтелектуальної гри, екскурсії чи вікторини), то слід записати: „План проведення інтелектуальної гри". Не детальний план проведення будь-якої справи педагогом записується за умови, коли він вільно володіє матеріалом і немає потреби у детальному викладі. Подаючи досвід виховної роботи на обласну педагогічну виставку, науково-методичну раду, обласні та Всеукраїнські конкурси, слід подавати розгорнуті сценарії усіх виховних справ.

9. На титульній сторінці обов'язково потрібно вказати форму проведення виховної справи, її тему, прізвище, ім'я та по батькові автора, його посаду та місце роботи, район.

 

1. Батьківщина ­ країна стосовно до людей, які народилися в ній і є її громадянином; вітчизна, край батьків, рідний край.

2. Культура ­ це сукупність досягнень суспільства в науці, у мистецтві, в організації життя, все, що створено людством протягом свого існування.

3. Людина ­ жива істота, яка наділена даром мислення і мовлення, здібністю створювати знаряддя і користуватися ним у процесі суспільної праці.

4. Духовність людини ­ це уміння мріяти, фантазувати, творчо удосконалювати світ, прагнучи зробити його кращим. Уміти створити свій внутрішній світ, не схожий на навколишню дійсність, ­ це один із найважливіших проявів духовності.

5. Індивід ­ (пізньолатинський переклад грецького поняття атом), означає одиничне на відміну від сукупності, маси, тобто це окрема людина на відміну від колективу, соціальної групи, суспільства в цілому.

6. Цінності ­ це поняття, яким широко послуговуються у філософії але акцентування на людському, соціальному та культурному значені тих чи інших явищ дійсності. Цінності ­ це рівень значущості одного стосовно іншого в певній системі.

7. Творчість ­ це притаманна людині здатність створювати нові цінності, що є засобом самовираження людини як прояву цілепокладаючої активності її свідомості та потреб суспільно-історичної практики.

8. Свідомість, совість, делікатність, толерантність, ідеал, ідеальний, дух, егоїзм, особистість, талант, індивідуальність, інтелект, інтелігентність, світ, громада, діаспора, звичай, етнос, обряд, раса, ритуал, традиції, етнографія, інновація, міграція, матріархат, національні меншості, моральність, добро, ввічливість, етика, внутрішній світ, обов'язок, любити, самовдосконалювання, лестощі, лукавство, моральні цінності, наклеп, святенництво, справедливість, хитрість, великодушність, кумир, притча, почуття, загальнолюдські цінності, хамство, людяність, чуйність, релігійний, громадянин, громадянськість, демократія, громадянське суспільство, гуманістична мораль, декларація, права людини, конвенція, соціальний, правові норми, закон, рівноправність, народ, нація, нацизм, патріотизм, шовінізм, патріот, самовиховання.

Теоретическая сущность понятия «модель технического объекта»

Общим качеством, присущим всем системам техники, является то, что они имеют потребительную стоимость, то есть полезность для общества или отдельного индивидуума. Полезность оценивается через выполняемое системой действие, через результат.

Однако эта полезность не дается человеку в чистом виде. Само существование искусственно созданных объектов, то есть преобразованных тел природы, предполагает, что технические объекты имеют и стоимость. Для получения желаемого результата необходимо создать саму систему и с ее помощью преобразовать некие ресурсы.

То есть технический объект реализует в себе единство затрат и выигрыша. Их отношение лежит в основе практически всех систем оценки эффективности.

Понятие «модель технического объекта», на наш взгляд, непосредственно связана с необходимостью рассмотрения категории идеального.

Идеал в общественных науках, в искусстве определяется энциклопедическим словарем как «идея, понятие, высшее совершенство, высшая конечная цель деятельности, стремлений, помыслов, совершенный образ, предел каких-либо мечтаний» [6, с. 28].

Два различных понятия идеального сливаются вместе в ситуации, когда мы строим идеальную модель технической системы.

Она соответствует научной идеализации, так как формирует образ системы, через описание только ее полезной функции. И этот же образ может быть представлен как высшая конечная цель деятельности по совершенствованию технической системы [6, с. 28].

Идеальные объекты создают определенный образ будущей конструкции. Существование этого образа связано с наличием у разработчика творческого воображения, фантазии.

Обычно разработчики находятся в тисках реально возможного, постоянно учитывают существующие ограничения. При работе с идеальным объектом эти ограничения могут быть существенно ослаблены или сняты вообще.

Таким образом, исходя из всего вышесказанного, модель или технического объекта, процесса или системы - это упрощенное их представление, сохраняющее с некоторой точностью те их свойства, характеристики и параметры, которые интересуют исследователя [7, с. 18].

Модели строятся с целью изучения свойств и характеристик, прогнозирования поведения проектируемых и реальных систем, исследовать которые непосредственно нецелесообразно или невозможно по каким-то причинам.

Классификация моделей уже достаточно давно давалась и дается в литературе, например [1, с. 165], что свидетельствует о трудности, а может быть и об отсутствии необходимости создания универсальной классификации.

Способы классификации определяются и точкой зрения авторов на предмет идентификации и их личными предпочтениями. Это позволяет и нам уточнять классификацию моделей, согласуя ее с областью их применения.

По способу реализации модели можно разделить на:

1. Физические - воспринимаемые органами чувств человека:

- масштабные - уменьшенные или увеличенные копии (модель самолета или корабля);

- аналоговые - механические, гидравлические, электронные,... модели (АВМ);

- виртуальные - отображаемые на мониторе в графической и цифровой формах, в том числе, модели, созданные в специализированных программах (VisSim, MBTY, MVS и др.), некоторые электронные игры, например, автогонки;

- макеты (муляжи), в т.ч. детские игрушки и т.п.

2. Математические - воспринимаемые умом, интеллектом человека:

- аналитические - набор формул, например, система уравнений в переменных состояния;

- алгоритмические - задаются в виде алгоритма, связывающего выходные и внутренние сигналы модели со входными.

По степени соответствия модели реальному объекту:

1. Адекватные по точности - отображающие в области своей применимости с необходимой (заданной) точностью реальный объект.

2. Физически состоятельные - истинные по Клиначёву Н.В., - опирающиеся на физические законы, характеризующие объект управления в области их применимости.

3. Аппроксимации - ложные по Клиначёву Н.В., - построенные на основе приближенных или эмпирических формул, характеризующих объект.

По назначению (по способности работать в реальном времени):

1. Модели инвариантные к реальному времени (используются для изучения свойств реальных объектов и систем).

1. Модели реального времени (real-time или hardware-in-loop модели) являющиеся составной частью реальной системы (используются либо для управления ею, либо для отладки).

По степени точности решателя:

1. Графические модели - 10...5 %.

2. Аналоговые модели - 1...0,01 %.

3. Компьютерные модели, рассчитываемые процессором с плавающей точкой (не проявляется эффект квантования параметров) - 0,00...01 % (в мантиссе до 20 десятичных разрядов).

4. Компьютерные модели, рассчитываемые процессором с фиксированной точкой (проявляется эффект квантования параметров) - 10...0,01 %.

По типу графов:

1. Модели на основе направленных графов (модели программ VisSim, Simulink, MBTY).

2. Модели на основе ненаправленных графов (модели программы Electronics Workbench).

По виду направленного графа:

1. Модели с последовательным графом (ПФ разложена на множители).

2. Модели с параллельным графом (ПФ разложена на элементарные дроби).

3. Модели на основе одного из двух универсальных графов, которые соответствуют стандартной форме записи передаточной функции.

4. Модели с графами, специфика которых учитывает эффект квантования параметров.

5. Модели с матричными графами (ABCD-граф или граф для решения уравнений в форме Коши).

По степени сложности модели могут характеризоваться:

1. Порядком ее системы уравнений.

2. Степенью вложенности блоков, т.е. количеством иерархических уровней.

3. Количеством иерархически подчиненных субмоделей.

По реализуемости. Модель может быть:

1. Реализуемой.

2. Нереализуемой.

Это далеко не весь спектр классификаций моделей технического объекта.

Мы в данной работе будем касаться рассмотрения в основном математических моделей технических объектов, в частности нами будут рассмотрены диагностические модели, а также модель многоэлементного технического объекта. Это обусловлено тем обстоятельством, что необходимость разработки методов и средств контроля текущего состояния технической системы и прогнозирования динамических моделей при диагностировании, особенно важных при исследовании параметров вибрации.

В связи с этим основные свойства технического объекта как элемента системы, характеризуются оператором L, который связывает входные и выходные сигналы U1(t) и U2 (t), а также учитывает зависимость U2(t) от возмущающего фактора, порожденного собственными внутренними процессами. Качество функционирования зависит не только от конструктивные параметров, но и от возмущений, которые изменяются во времени и могут вызвать параметрический отказ системы.

В обобщенной модели существуют два вида характерных процессов: быстрые - вибрация и флуктуация эксплуатационных показателей и медленные - изменения параметров.

Быстрые процессы определяют качество функционирования модели в рассматриваемый момент времени, а медленные - надежность систем.

Технической диагностикой называется наука о распознавании состояния технической системы. Она изучает методы получения и оценки диагностической информации, диагностические модели и алгоритм принятия решения.

Целью технической диагностики является повышение надежности, безопасности и ресурса технических систем [3, с. 20].

Сущность диагностики машин состоит в разработке и практической реализации алгоритмов оценки параметров технического состояния объекта диагностирования без его разборки в рабочих условиях по контролируемым параметрам.

Назначение диагностики - оценка степени отклонения технического состояния объекта диагностирования в текущий (контролируемый) момент времени, а также проверка работоспособности и правильности функционирования объекта, поиск дефектов, нарушающих работоспособность и правильность функционирования. При определении технического состояния объектов необходимо также решать задачи прогнозирования и задачи генеза (технической генетики). Назначение прогнозирования - предсказание технического состояния, в котором окажется объект в некоторый будущий момент времени.

Технические системы состоят из большого числа взаимодействующих элементов, относительное перемещение которых порождает колебательные процессы, усиливающиеся или изменяющиеся при появлении дефектов.

В процессе превращения энергии источника в работу генерируются переменные силы, возбуждающие колебания. Эти колебания воспринимаются датчиками, и по ним делается заключение о состоянии механизма.

Назначение генеза - определение технического состояния, в котором находился объект в некоторый момент времени в прошлом. Задачи технической генетики возникают, например, в связи с расследованием аварий и их причин, когда техническое состояние объекта в рассматриваемое время отличается от состояния, в котором он был в прошлом, в результате появления первопричины, вызвавшей аварию. Эти задачи решаются путем определения возможных или вероятных предысторий, ведущих в настоящее состояние объекта.

К задачам технической диагностики относятся, например, задачи связанные с определением срока службы объекта или с назначением периодичности его профилактических проверок и ремонтов. Эти задачи решаются путем определения возможных или вероятных эволюций состояния объекта, начинающихся в настоящий момент времени. Решение задач прогнозирования весьма важно, в частности, для организации технического обслуживания по состоянию (вместо обслуживания по срокам и по ресурсу).

Объект диагностирования (ОД) в технической диагностике - это такой технический объект, относительно которого решается определенная диагностическая задача.

В общем случае, диагностическая задача - это задача по установлению степени соответствия технического объекта предъявляемым к нему требованиям.

Принято различать две основные задачи: прямая диагностическая задача или задача контроля технического состояния и обратная диагностическая задача или задача поиска дефектов.

Исходя из этого, общее определение диагностической модели сформулируем в следующем виде.

Диагностическая модель - это любое знание, используемое в процессе решения диагностической задачи и представленное в определенной форме [3, с. 20].

Спектр форм диагностических моделей широк - от образов дефектов и их признаков в сознании отдельного специалиста-практика по обслуживанию и ремонту ОД до математических конструкций, реализованных в формальных диагностических программах.

Отметим, что прямая и обратная задачи являются по существу выражением в технической диагностике двух фундаментальных подходов теории систем.

Задача контроля есть выражение функционального подхода; задача поиска дефектов - выражение структурного подхода. Традиционно, используя готовый математический аппарат, для решения первой задачи применяют абстрактные модели (дифференциальное уравнение заданного порядка, аналитическое выражение логической функции, абстрактный конечный автомат), а для решения второй - структурные модели (структурные, комбинационные, последовательностные схемы).

Выбор диагностического сигнала должен проводиться таким образом, чтобы он был достаточно информативен для оценки вектора r, его изменений.

Сложность вибрационных процессов, вызванных работой технического объекта и его элементов, различие физических моделей и методов их математического описания на различных участках частотного диапазона послужили основанием для разбивки его на три поддиапазона: [2, с. 20]:

- диапазон низких частот (от 0 до 200-300 Гц);

- диапазон средних частот (от 200-300 Гц до 1-2 кГц);

- диапазон высоких частот (от 1-2 к Гц до 10-20 кГц).

При рассмотрении диагностических моделей целесообразно, на наш взгляд, ввести еще один поддиапазон: диапазон сверхвысоких частот (от 10-20 кГц до 100-200 кГц).

Полезность такого деления объясняется тем, что каждому диапазону свойственны свои возмущающие силы, своя физическая модель объекта как колебательной системы и своя диагностическая модель.

Низкочастотная вибрация носит преимущественно гармонический характер, так как одной из характерных причин ее является неуравновешенность вращающихся масс. Наиболее вероятными причинами низкочастотных колебаний являются: неуравновешенность, гарушение соосности валов; нарушение геометрии узлов; периодические силы, создаваемые рабочим процессом.

Динамическая модель механизма в области низкочастотных колебаний представляет собой комбинацию сосредоточенных масс, связанных с упругими безынерционными элементами. Силы в этих моделях обычно носят детерминированный характер. Весь объект рассматривается как единая упругая система, исследование которой производится методами прикладной теории колебаний.

Колебания среднечастотного диапазона обусловлены:

- высшими гармониками сил неуравновешенности элементов, обусловленных наличием нелинейных элементов в системе;

- нарушением геометрии кинематических пар;

- динамическим взаимодействием элементов машины между собой и с окружающей средой.

Каждая диагностическая модель имеет свои особенности.

Диагностический эксперимент или процесс диагностирования состоит из отдельных испытаний, которые принято называть элементарными проверками (ЭП).

Элементарная проверка есть акт однократной оценки определенного ДП. Оценка ДП производится в заранее фиксированных местах ОД, их принято называть контрольными точками (КТ). Часто ЭП называют пару, первая компонента которой - это определенное воздействие на ОД, а вторая - реакция ОД на это воздействие.

Ясно, что ОД, находящийся в разных технических состояниях (ТС), может выдавать разные реакции в одной и той же ЭП. При таком узком понимании ЭП можно различать три их вида.

Первый вид - фиксируется значение входного воздействия и наблюдается реакция в нескольких КТ (вид 1:М). Второй вид - подается определенная последовательность входных воздействий и наблюдается последовательность реакций в одной КТ (вид М:1). Третий вид - это общий случай: подается последовательность входных воздействий и наблюдается более одной КТ (вид М:N). Исход диагностического эксперимента всегда случаен, так как если он предопределен, то проводить его бессмыс- ленно.

Таким образом, всякий процесс диагностирования включает последовательности ЭП при известных условиях и заданном наборе КТ.

В рамках структурного подхода понятие ЭП применяют также к отдельным частям ОД или их совокупностям. В этом случае, предполагается доступность входов и выходов этих частей. Какова мощность множества возможных ЭП (ВМП).

Термин диагностическая модель можно понимать в широком и в узком смыслах. В первом случае это понятие включает в себя в достаточном объеме все три вида перечисленных выше знаний. Назовем такую диагностическую модель полной.

Автору не известны научные работы, в которых бы формально описывалась полная диагностическая модель. Хотя в практике диагностирования использование полных неформальных диагностических моделей - это норма. Пример этому дают инструкции по техническому обслуживанию ремонту сложных технических систем. В них обязательно есть раздел «возможные неисправности и методы их устранения», в котором, как правило, приводится таблица с перечнем дефектов, их диагностических показателей и методов их устранения.

В этой таблице сконцентрированы все три вида диагностических знаний. Кроме того, в инструкциях обычно точно сказано, с чего следует начать осмотр. Если обнаруживаются те или иные особенности функционирования ОД, то в инструкции сказано, какие дополнительные наблюдения или измерения необходимо сделать, какие профилактические мероприятия надо провести, или, наконец, указывается действие, устраняющее дефекты.

Другими словами, описываются алгоритмы диагностирования и ремонта. В результате субъект диагностической деятельности, реализующий указания инструкции, может и не знать, какова причина неисправности. Инструкция составляется обычно группой квалифицированных специалистов с учетом опыта эксплуатации таких же или подобных систем [3, с. 24].

Всякая диагностическая модель, формализующая процесс поиска, нужна для двух применений: для построения алгоритмов диагностирования и для построения эталонной модели.

При автоматизации процессов диагностирования алгоритм поиска дефектов служит основой для синтеза технических средств диагностирования, а эталонная модель является носителем исправного или технической неисправности в этих средствах.

Почему теоретическая диагностика до сих пор не имеет полных диагностических моделей? По-моему, одна из причин следующая. Взять готовый математический аппарат и применить его к ограниченной этим аппаратом диагностической задаче - такова сегодня традиция в теории диагностирования.

С другой стороны все три вида диагностических знаний не формализуются адекватно в рамках любого из существующих математических аппаратов.

Подобная ситуация имеет место и в других областях науки и практики [3, с. 25].

Альтернатива установившейся традиции - это сочетание формальных и неформальных методов анализа в рамках целостного единого процесса исследования. Реализация такого подхода возможна в развитии теории диагностических экспертных систем.

Модель, не содержащую в достаточном объеме, хотя бы один из видов диагностических знаний, будем называть частной диагностической моделью.

Приведем несколько примеров частных диагностических моделей.

Если перечислены идентификаторы возможных дефектов, допускается существование способа оценки вектора ДП, определены необходимые априорные вероятности, то для поиска может быть использована схема Байеса, согласно которой по наибольшему значению апостериорной вероятности принимается решение о текущем одиночном дефекте.

Таким образом, можно сделать вывод о том, что диагностические модели являются определенной разновидностью структурных математических моделей для решения сугубо прикладных, диагностических задач.

Система моделирования включает инструментарий автоматизации моделирования процессов массо-теплопереноса, выработки и распределения электроэнергии, состояния элементов оборудования, а также ряд инструментов, обеспечивающих двух- и трехмерную динамическую визуализацию имитируемых процессов на экране компьютера.

Модель объекта представляется системой алгебраических и дифференциальных уравнений, что обеспечивает возможность моделирования как статических состояний, так и переходных процессов в реальном времени.

Модель многоэлементного объекта в общем случае включает:

- модели технологических подсистем объекта (водяных, гидравлических, воздушных);

- модели электроэнергетической системы объекта (выработка и распределение электроэнергии);

- модели систем управления объектом, обеспечивающие имитацию как автоматических, так и ручных алгоритмов управления;

- модели состояния технологического оборудования объекта;

- модели развития факторов аварийных ситуаций на объекте (пожар, изменение газовоздушной среды и ряд прочих, специфичных для объекта);

- модели состояния персонала, обслуживающего объект.

Опыт моделирования многоэлементных технических объектов, а также опыт, накопленный в процессе разработки инструментальных средств моделирования и исполнения моделей, может быть использован в довольно широком спектре, для чего необходимо обеспечить:

1. Анализ предметной области и постановку задачи на разработку математического описания объектов данной предметной области;

2. Определение класса моделей, составляющих математическое описание объекта, выработку допущений и ограничений;

3. Возможное проведение экспериментальных исследований на объекте для решения задач идентификации объекта, параметрической настройки моделей, оценку степени адекватности моделей;

3. Разработку инструментальных систем (при необходимости);

4. Разработку (доработку, переработку) систем мониторинга моделируемого объекта;

5. Разработку моделирующего блока;

6. Разработку необходимых баз данных;

7. Экспертную оценку полученных результатов.

При исследовании сложных технических систем с дискретным характером функционирования наиболее широкое применение получили аналитическиеи имитационные методы моделирования.

Одним из основных требований, предъявляемых к модели, является ее адекватность реальной системе, которая достигается за счет использования моделей с различным уровнем детализации, зависящим от особенностей структурно-функциональной организации системы и целей исследования. Процессы функционирования реальных систем невозможно описать полно и детально, что обусловлено существенной сложностью таких систем. Основная проблема при разработке модели состоит в нахождении компромисса между простотой ее описания и необходимостью учета многочисленных особенностей, присущих реальным системам. Попытка построить единую универсальную модель обречена на неудачу, ввиду ее необозримости и невозможности расчета.

Математическое моделирование многоэлементных технических систем должно базироваться на ряде принципов, обеспечивающих корректность и достоверность результатов моделирования и, в конечном счете, качественное проектирование систем.

Среди этих принципов можно выделить три основных принципа:

1) системный подход при решении задач анализа и синтеза;

2) принцип иерархического многоуровневого моделирования;

3) принцип множественности моделей.

В основе исследования многоэлементных технических систем с использованием математического моделирования лежит системный подход, конечной целью которого является системотехническое проектирование, направленное на построение системы с заданным качеством. Для решения задач проектирования необходимо располагать знаниями о том, как влияют различные способы структурно-функциональной организации на характеристики функционирования системы, то есть решать задачи системного анализа.

Принцип иерархического многоуровневого моделирования базируется на иерархическом описании исследуемой системы и процессов, протекающих в них. При этом система и протекающие в ней процессы представляются семейством моделей, каждая из которых описывает поведение системы с точки зрения различных уровней абстрагирования, отличающихся рядом характерных особенностей и параметров, с помощью которых и описывается поведение системы.

Применительно к моделям многоэлементных технических систем с дискретным характером функционирования предлагается выделить два направления иерархии:

1) иерархия по вертикали, в которой деление моделей по уровням осуществляется в зависимости от структурно-функциональных особенностей системы;

2) иерархия по горизонтали, в которой деление моделей по уровням осуществляется в зависимости от методов их исследования.

В иерархии по вертикали, в общем случае, можно выделить три уровня моделей:

? уровень базовых моделей, содержащий простейшие модели, на основе которых строятся и могут быть рассчитаны другие более сложные модели второго и третьего уровней;

? уровень локальных моделей, отображающих отдельные особенности структурно-функциональной организации систем и позволяющих решать частные задачи анализа и синтеза;

? уровень глобальных моделей, наиболее полно отображающих структурные и функциональные особенности организации исследуемых систем и представляющих собой модели с высокой степенью детализации.

Модель используется при анализе движения деталей, соединенных в кинематические группы.

При анализе движения деталей, соединенных в кинематические группы, приходиться опираться на ряд абстракций и допущений, которые приводит к определенным погрешностям, но в то же время позволяют вскрыть принципиальную сущность этих явлений и облегают понимание механизма возникновения упруго - демпфированных колебаний [2, с. 30].

Реальный механизм всегда имеет внутренние степени свободы, связанные с наличием зазоров в кинематических группах. Для диагностирования это обстоятельство является весьма существенным, так как механизм выступает в качестве системы со многими степенями свободы. Точная постановка задачи о движении реального механизма требует составления и решения многомерной системы дифференциальных уравнений, порядок которого равен удвоенному числу степеней свободы организма [1, с. 167].

Первым шагом к упрощению задачи будет рассмотрение относительного движения элементов. Силы, действующие на детали со стороны сопряженных с ней элементов, будем считать заданными.

Элементы механизма во время работы совершают сложные движения, но следует отказаться от попытки проследить движение каждого элемента во всей его сложности. Необходимо сосредоточить внимание только на перемещении элементов относительно друг друга по паразитным степеням свободы.

Наибольший интерес представляет собой относительное движение элементов, соединенных в кинематическую схему - многомассовую систему.

Поведение подобного объекта, описывается системой линейных дифференциальных уравнений:

где mi - масса i - го элемента,

ni - коэффициент демпфирования,

сi - жесткость i - упругой связи,

W - абсолютное перемещение места установки,

xj - абсолютное перемещение j - элемента.

При рассмотрении соударений элементов будем исходить из общих положений, позволяющих проследить зависимость между параметрами удара и величиной зазора в кинематической группе, характеризующую техническое состояние узла в соответствии с поставленными задачами исследователя.

Существенное влияние на моторесурс кинематической схемы оказывает характер взаимодействия сопрягаемых изделий.

Силы, действующие между сопряженными элементами, можно подразделить на квазистатические (постоянные или медленно меняющиеся), импульсные силы трения (демпфированные).

Особенность квазистатических взаимодействий заключается в том, что они не несут на себе информацию о техническом состоянии конкретных кинематических пар и не представляют практического интереса.

Импульсные взаимодействия возникают при соударении элементов. Они отличаются значительной величиной и малой длительностью процесса. В первый момент столкновения элементов деформация и напряжения локализуются только лишь в малом объеме материала, большая часть механизма остается в невозмущенном состоянии.

Лишь через некоторое время, равное примерно возмущение распространиться по всему механизму, и в нем начнется колебательный процесс, где L - характерный линейный размер механизма; С - скорость распространения упругих колебаний в материале механизма.

В отличие от импульсных и квазистатических взаимодействий, носящих в основном регулярный характер, действие сил трения проявляется в виде последовательных хаотических толчков малой интенсивности и длительности. С трением связаны широкополосные колебания, которые накладываются на регулярный сигнал шумового фона [2, с. 33].

В связи с тем, что не всегда имеется возможность измерить вибропараметры конкретного элемента механизма (например, деталей поршневой группы в дизеле), появляется необходимость оценки вибрации по виброактивности другого (например, блока цилиндров), то есть вывести уравнение, связывающее вибрацию одного элемента в другим.

Таким образом, подводя итог всему вышесказанному, необходимо сделать ряд следующих выводов.

Модель или технического объекта, процесса или системы - это упрощенное их представление, сохраняющее с некоторой точностью те их свойства, характеристики и параметры, которые интересуют исследователя [7, с. 18].

Модели строятся с целью изучения свойств и характеристик, прогнозирования поведения проектируемых и реальных систем, исследовать которые непосредственно нецелесообразно или невозможно по каким-то причинам.

Классификация моделей уже достаточно давно давалась и дается в литературе, например, что свидетельствует о трудности, а может быть и об отсутствии необходимости создания универсальной классификации.

Мы рассмотрели в основном математических моделей технических объектов, в частности нами будут рассмотрены диагностические модели, а также модель многоэлементного технического объекта. Это обусловлено тем обстоятельством, что необходимость разработки методов и средств контроля текущего состояния технической системы и прогнозирования динамических моделей при диагностировании, особенно важных при исследовании параметров

В связи с этим основные свойства технического объекта как элемента системы, характеризуются оператором L, который связывает входные и выходные сигналы U1(t) и U2 (t), а также учитывает зависимость U2(t) от возмущающего фактора, порожденного собственными внутренними процессами. Качество функционирования зависит не только от конструктивные параметров, но и от возмущений, которые изменяются во времени и могут вызвать параметрический отказ системы.

В обобщенной модели существуют два вида характерных процессов: быстрые - вибрация и флуктуация эксплуатационных показателей и медленные - изменения параметров.

Быстрые процессы определяют качество функционирования модели в рассматриваемый момент времени, а медленные - надежность систем.

 

Христина Дрогомирецька

067 657 95 15

[email protected]

 

Наталка Соколенко:

Телерепортер, учасниця журналістського руху «Стоп цензурі!» та «Самоврядної альтернативної мережі».

З 2004 р. — кореспондентка програми «Вікна. Новини» телеканалу СТБ.

2009 р. — Отримала національну премію «Телетріумф» як найкращий репортер.

Блог Наталки Соколенко на «Українській правді».

 

Автор фото - Громадська кампанія Новий Громадянин

 

<== предыдущая лекция | следующая лекция ==>
Лекція №8 | Л е к ц і я
Поделиться с друзьями:


Дата добавления: 2013-12-14; Просмотров: 526; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.193 сек.