Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

ВНУТРЕННЕЕ СТРОЕНИЕ ЗЕМЛИ


Доверь свою работу кандидату наук!
1500+ квалифицированных специалистов готовы вам помочь

Изучение внутреннего строения Земли производится различными методами. Геологические методы, основанные на изучении естественных обнажений горных пород, разрезов шахт и рудников, кернов глубоких буровых скважин, дают возможность судить о строении приповерхностной части земной коры. Глубина известных пробуренных скважин достигает 7,5-9,5 км, и только одна в мире опытная скважина, заложенная на Кольском полуострове, уже достигла глубины более 12 км при проектной глубине до 15 км. В вулканических областях по продуктам извержения вулканов можно судить о составе вещества на глубинах 50-100 км.

Рис. 1.5. Строение Земли. Оболочки Земли, выделенные по распространению сейсмических волн

Выделяют три главные области Земли:

1. Земная кора (слой А) -верхняя оболочка Земли, мощность которой изменяется от 6-7 км под глубокими частями океанов до 35-40 км под равнинными платформенными территориями континентов, до 50-70(75) км под горными сооружениями (наибольшие под Гималаями и Андами).

2. Мантия Земли, распространяющаяся до глубин 2900 км. В ее пределах по сейсмическим данным выделяются: верхняя мантия - слой В глубиной до 400 км и С - до 800-1000 км (некоторые исследователи слой С называют средней мантией); нижняя мантия - слой D до глубины 2700 с переходным слоем D1 - от 2700 до 2900 км.

3. Ядро Земли, подразделяемое: на внешнее ядро - слой Е в пределах глубин 2900-4980 км; переходную оболочку - слой F - от 4980 до 5120 км и внутреннее ядро - слой G до 6971 км.

По имеющимся данным выделены несколько разделов первого порядка, в которых скорость сейсмических волн резко изменяется.

Как видно из данных таблицы, земная кора отделяется от слоя В верхней мантии достаточно резкой граничной скоростью. Мохоровичич при изучении балканских землетрясений впервые установил наличие этого раздела, носящего теперь его имя и принятого за нижнюю границу земной коры Второй резкий раздел совпадает с переходом от нижней мантии к внешнему ядру, где наблюдается скачкообразное падение скорости продольных волн с 13,6 до 8,1 км/с, а поперечные волны гасятся. Внезапное резкое уменьшение скорости продольных волн и исчезновение поперечных волн во внешнем ядре свидетельствуют о необычайном состоянии вещества, отличающемся от твердой мантии.



Плотность. Средняя плотность Земли составляет 5,52 г/см3. Горные породы, слагающие земную кору, отличаются малой плотностью. В осадочных породах плотность около 2,4-2,5 г/см3 , в гранитах и большинстве метаморфических пород - 2,7-2,8 г/см3 , в основных магматических породах - 2,9-3,0 г/см 3. Средняя плотность земной коры принимается около 2,8 г/см3 . Сопоставление средней плотности земной коры с плотностью Земли указывает на то, что во внутренних оболочках - мантии и ядре плотность должна быть значительно выше.

Магнетизм. Земля действует как гигантский магнит с силовым полем вокруг. Сведения о распределении магнитного поля Земли на ее поверхности и околоземном пространстве дают наземные, морские и аэромагнитные съемки, а также измерения, производимые на низколетящих искусственных спутниках Земли.

Геомагнитное поле дипольное, магнитные полюсы Земли не совпадают с географическими. Между магнитным и географическим полюсами образуется некоторый угол (около 11,5o), называемый магнитным склонением. Различают также магнитное наклонение, определяемое как угол между магнитными силовыми линиями и горизонтальной плоскостью., Земля работает как динамомашина, в которой механическая энергия этой конвекционной системы генерирует электрические токи и связанный с ними магнетизм.

Магнитное поле Землиоказывает влияние и на ориентировку в горных породах ферромагнитных минералов, таких, как гематит, магнетит, титаномагнетит и др. Особенно это проявляется в магматических горных породах - базальтах, габбро, перидотитах и др. Ферромагнитные минералы в процессе застывания магмы принимают ориентировку существующего в это время направления магнитного поля. После того, когда горные породы полностью застывают, ориентировка ферромагнитных минералов сохраняется. Определенная ориентировка ферромагнитных минералов происходит и в осадочных породах во время осаждения железистых минеральных частиц

Тепловой режим Земли определяется излучением Солнца и теплом, выделяемым внутриземными источниками. Самое большое количество энергии Земля получает от Солнца, но значительная часть ее отражается обратно в мировое пространство. Количество получаемого и отраженного Землей солнечного тепла неодинаково для различных широт. Среднегодовая температура отдельных пунктов в каждом полушарии уменьшается от экватора к полюсам. Ниже поверхности Земли влияние солнечного тепла резко снижается, в результате чего на небольшой глубине располагается пояс постоянной температуры, равной среднегодовой температуре данной местности. Глубина расположения пояса постоянных температур в различных районах колеблется от первых метров до 20-30 м.

Ниже пояса постоянных температур важное значение приобретает внутренняя тепловая энергия Земли. Давно установлено, что в шахтах, рудниках, буровых скважинах происходит постоянное увеличение температуры с глубиной, связанное с тепловым потоком из внутренних частей Земли. Однако исследования, проведенные как на континентах, так и в океанах, показали значительную изменчивость теплового потока в различных структурных зонах.

Каковы же источники тепла внутри Земли? Как известно, в соответствии с современными представлениями Земля сформировалась в результате аккреции газово-пылевых частиц протопланетного облака в виде холодного тела. Следовательно, внутри Земли должны иметься источники тепла, создающие современный тепловой поток и высокую температуру в недрах Земли. Одним из источников внутренней тепловой энергии является радиогенное тепло, связанное с распадом радиоактивных долгоживущих элементов 238U, 235U, 232Th, 40K, 87Rb. Периоды полураспада этих изотопов соизмеримы с возрастом Земли, поэтому до сих пор они остаются важным источником тепловой энергии. Вторым источником тепловой энергии предполагается гравитационная дифференциация вещества, зарождающаяся после некоторого разогрева на уровне ядра.



Температура внутри Земли. Определение температуры в оболочках Земли основывается на различных, часто косвенных данных. Наиболее достоверные температурные данные относятся к самой верхней части земной коры, вскрываемой шахтами и буровыми скважинами до максимальных глубин- 12 км (Кольская скважина). Нарастание температуры в градусах Цельсия на единицу глубины называют геотермическим градиентом, а глубину в метрах, на протяжении которой температура увеличивается на 10 С - геотермической ступенью. Геотермический градиент и соответственно геотермическая ступень изменяются от места к месту в зависимости от геологических условий, эндогенной активности в различных районах, а также неоднородной теплопроводности горных пород. При этом, по данным Б. Гутенберга, пределы колебаний отличаются более чем в 25 раз. Примером тому являются два резко различных градиента: 1) 150o на 1 км в штате Орегон (США), 2) 6o на 1 км зарегистрирован в Южной Африке. Соответственно этим геотермическим градиентам изменяется и геотермическая ступень от 6,67 м в первом случае до 167 м - во втором. Наиболее часто встречаемые колебания градиента в пределах 20-50o, а геотермической ступени -15-45 м. Средний геотермический градиент издавна принимался в 30oС на 1 км.

Геотермический градиент близ поверхности Земли оценивается в 20o С на 1 км. Если исходить из этих двух значений геотермического градиента и его неизменности в глубь Земли, то на глубине 100 км должна была бы быть температура 3000 или 2000o С. Однако это расходится с фактическими данными. Именно на этих глубинах периодически зарождаются магматические очаги, из которых изливается на поверхность лава, имеющая максимальную температуру 1200-1250o. Учитывая этот своеобразный "термометр", ряд авторов (В. А. Любимов, В. А. Магницкий) считают, что на глубине 100 км температура не может превышать 1300-1500oС. При более высоких температурах породы мантии были бы полностью расплавлены, что противоречит свободному прохождению поперечных сейсмических волн. Таким образом, средний геотермический градиент прослеживается лишь до некоторой относительно небольшой глубины от поверхности (20-30 км), а дальше он должен уменьшаться. Но даже и в этом случае в одном и том же месте изменение температуры с глубиной неравномерно. Это можно видеть на примере изменения температуры с глубиной по Кольской скважине, расположенной в пределах устойчивого кристаллического щита платформы. При заложении этой скважины рассчитывали на геотермический градиент 10o на 1 км и, следовательно, на проектной глубине (15 км) ожидали температуру порядка 150oС. Однако такой градиент был только до глубины 3 км, а далее он стал увеличиваться в 1,5-2,0 раза. На глубине 7 км температура была 120o С, на 10 км -180oС, на 12 км -220o С. Предполагается, что на проектной глубине температура будет близка к 280o С. Вторым примером являются данные по скважине, заложенной в Северном Прикаспии, в районе более активного эндогенного режима. В ней на глубине 500 м температура оказалась равной 42,2o С, на 1500 м-69,9oС, на 2000 м-80,4oС, на 3000 м - 108,3oС.

Средний химический состав Земли. Для суждения о химическом составе Земли привлекаются данные о метеоритах, представляющих собой наиболее вероятные образцы протопланетного материала, из которого сформировались планеты земной группы и астероиды. К настоящему времени хорошо изучено много выпавших на Землю в разные времена и в разных местах метеоритов. По составу выделяют три типа метеоритов: 1) железные, состоящие главным образом из никелистого железа (90-91% Fe), с небольшой примесью фосфора и кобальта; 2) железокаменные (сидеролиты), состоящие из железа и силикатных минералов; 3) каменные, или аэролиты, состоящие главным образом из железисто-магнезиальных силикатов и включений никелистого железа.

Повышенное распространение относится к четырем важнейшим элементам - О, Fe, Si, Mg, составляющим свыше 91%.

Минералами называются природные химические соединения или отдельные химические элементы, возникшие в результате физико-химических процессов, происходящих в Земле. В земной коре минералы находятся преимущественно в кристаллическом состоянии, и лишь незначительная часть - в аморфном. Свойства кристаллических веществ обусловливаются как их составом, так и внутренним строением, т.е. кристаллической структурой. В кристаллических решетках расстояния между элементарными частицами и характер связей между ними в разных направлениях неодинаковы, что обусловливает и различие свойств. Такое явление называется анизотропией

. В аморфных веществах закономерность в расположении частиц отсутствует. Свойства их зависят только от состава и во всех направлениях статистически одинаковы, т.е. аморфные вещества изотропны или равносвойственны. Прежде всего, это выражается в том, что аморфные вещества не образуют кристаллов и не обладают спайностью.

Формы нахождения минералов в природе разнообразны и зависят главным образом от условий образования. Это либо отдельные кристаллы или их закономерные сростки (двойники), либо четко обособленные минеральные скопления, либо, чаще, скопления минеральных зерен - минеральные агрегаты.

Физические свойства минералов. Постоянство химического состава и внутренней структуры минералов обусловливает их свойства. На этом основаны различные методы минералогических исследований и определений минералов.

Морфология (происхождение) кристаллов минералов может явиться важным диагностическим признаком, хотя следует отметить, что в природе один и тот же минерал в разных условиях образует кристаллы различной формы, а разные минералы могут давать одинаковые кристаллы. Сингония - отражает степень симметричности кристаллов. Выделяют сингонии: кубическую, гексагональную, тетрагональную, ромбическую, моноклинальную или триклинной.

Оптические свойства минералов. Цвет - важный признак минералов. Окраска минерала определяется его химическим составом (основным и примесями).

Для непрозрачных и сильно окрашенных слабопрозрачных минералов важным диагностическим признаком является цвет минерала в порошке, или цвет черты. Он может быть и таким же, как в куске (см. магнетит), но может от него отличаться (см. пирит). У прозрачных и большинства просвечивающих минералов порошок белый или слабо окрашенный.

Прозрачность-характеризует способность минерала пропускать свет, зависит от его кристаллической структуры, а также от характера и однородности минерального скопления. По этому признаку выделяют минералы: непрозрачные, не пропускающие световых лучей; прозрачные, пропускающие свет подобно обычному стеклу; полупрозрачные или просвечивающие, пропускающие свет подобно матовому стеклу; просвечивающие лишь в тонкой пластинке. Агрегаты многих минералов на глаз кажутся непрозрачными.

Блескзависит от показателя преломления минерала и от характера отражающей поверхности. Выделяют минералы с металлическим блеском, к которым относятся непрозрачные минералы, имеющие темноокрашенную черту. Блеск, напоминающий блеск потускневшего металла, называют металловидным (полуметаллическим). Значительно более обширную группу составляют минералы с неметаллическим блеском, к разновидностям которого относятся: алмазный, стеклянный, жирный, перламутровый, шелковистый, восковой и, в случае отсутствия блеска, матовый.

Механические свойства минералов. Изломопределяется поверхностью, по которой раскалывается минерал. Она может напоминать ребристую поверхность раковины - раковистый излом, может иметь неопределенно-неровный характер - неровный излом. В мелкозернистых агрегатах определить излом отдельных минеральных зерен не удается; в этом случае полезно описать излом агрегата - зернистый, занозистый или игольчатый, землистый.

Спайность - способность кристаллических минералов раскалываться по ровным поверхностям - плоскостям спайности, соответствующим направлениям наименьшего сцепления частиц в кристаллической структуре минерала. В зависимости от того, насколько легко образуются сколы по плоскостям, выделяют различные степени спайности: весьма совершенная - минерал легко расщепляется на тонкие пластинки, совершенная - минерал при ударе раскалывается по плоскостям спайности, средняя спайность - при ударе минерал раскалывается как по плоскостям, так и по неровному излому; несовершенная спайность - на фоне неровного излома лишь изредка образуются сколы по плоскостям; весьма несовершенная спайность - всегда образуется неровный или раковистый излом

Твердость - способность противостоять внешнему механическому воздействию - важное свойство минералов. Обычно в минералогии определяется относительная твердость путем царапанья эталонными минералами поверхности исследуемого минерала: более твердый минерал оставляет на менее твердом царапину. В принятую "шкалу твердости" входят десять минералов, расположенных в порядке увеличения твердости: тальк обладает самой низкой твердостью, принятой за единицу (1), последний- алмаз имеет самую высокую твердость, принятую за десять (10).

Тальк – 1

Гипс – 2

Кальцит - 3

Флюорит - 4

Апатит - 5

Ортоклаз - 6

Кварц - 7

Топаз - 8

Корунд - 9

Алмаз - 10

Для определения твердости минералов можно пользоваться некоторыми распространенными предметами, твердость которых близка к твердости минералов - эталонов. Так, твердостью 1 обладает графит мягкого карандаша; около 2-2,5 - ноготь; 4 - железный гвоздь;5 - стекло; 5,5-6 - стальной нож, игла. Более твердые минералы встречаются редко.

Некоторым минералам присущи особые свойства, облегчающие их определение.

Классификация минералов и их описание. Количество известных в настоящее время минералов около 7000. Их можно группировать по разным признакам. В основе принятой в настоящее время классификации минералов лежат химический состав и структура. Большое внимание уделяется также генезису (греч. "генезис" - происхождение), что позволяет познавать закономерности распространения минералов в земной коре. Роль различных минералов в строении последней неодинакова: одни встречаются редко и представляют собой лишь незначительные и необязательные включения в горные породы; другие слагают основную массу пород, определяя их свойства; третьи, образующие локальные скопления или рассеянные в породах, представляют интерес как полезные ископаемые.

Классификация и характеристика основных породообразуюших минералов.

1.Силикаты. 2.Карбонаты

3.Окислы. 4.Гидроокислы.

5.Сульфиды. 6.Сульфаты.

7.Галоиды. 8.Фосфаты.

9.Вольфраматы. 10.Самородные элементы

1.Класс силикатов. Минералы этого класса широко распространены в земной коре (свыше 78%). Они образуются преимущественно в эндогенных условиях, будучи связаны с различными проявлениями магматизма и с метаморфическими процессами. Лишь немногие из них возникают в экзогенных условиях. Многие минералы этого класса являются породообразующими магматических и метаморфических горных пород, реже осадочных.

Одним из наиболее распространенных минералов группы является роговая обманка (Ca,Na)2(Mg,Fe2+)4(Al,Fe3+) (OH)2[(Si,Al)4O11]2.

К листовым (слоевым) силикатам относятся слюды, зерна которых встречаются во многих магматических и метаморфических породах; в жилах отдельные кристаллы слюд достигают в сечении нескольких квадратных метров. Происхождение магматическое, гидротермальное, метаморфическое.

Биотит [K(Mg,Fe)3(OH,F)2[AlSi3O10]. Цвет черный, бурый, иногда зеленоватый; блеск стеклянный, местами перламутровый; твердость 2-3; плотность 3-3,2. Как у всех слюд, листочки, отделяющиеся по спайности, упругие.

Мусковит [KAl2(OH)2[AlSi3O10] по многим свойствам близок к биотиту, но имеет почти бесцветную окраску со светло-розовым или серым оттенком, прозрачен в тонких листочках; плотность 2,7-3,1. Используется в электропромышленности, радиотехнике, приборостроении, для изготовления огнестойких строительных материалов, красок, смазочных материалов и др. Наиболее крупные месторождения СССР в Карелии, Восточной Сибири.

При гидротермальных процессах и метаморфизме основных и ультраосновных магматических пород (см. ниже), а также карбонатных осадочных пород образуются многие минералы той же структурной группы.

Тальк [Mg3(OH)2[Si4)O10] образует кристаллические агрегаты, реже отдельные крупные кристаллы и их сростки. Цвет белый, светло-зеленый; блеск стеклянный, перламутровый, у плотных мелкозернистых агрегатов матовый; листочки, отделенные по спайности, гибкие, неупругие; твердость 1 (на ощупь жирный); плотность 2,8. Широко используется как огнеупорный материал, при изготовлении изоляторов, в парфюмерии и пр. Крупные месторождения СССР на Урале, в Восточном Саяне.

Серпентин (змеевик) [Mg6(OH)8[Si4O10] встречается обычно в виде плотных скрытокристаллических разностей. Тонковолокнистая разновидность называется хризо-асбестом. Цвет светло-зеленый, желто-зеленый до черного, часто пятнистый, отдельные волокна белые; блеск стеклянный, жирный, у хризо-асбеста шелковистый; твердость 2-4; плотность 2,5-2,7. Хризо-асбест используется для изготовления огнестойких и теплоизоляционных материалов. Месторождения в СССР на Урале, в Саянах и др.

Из глинистых минералов наибольшим распространением пользуется каолинит [Al4(OH)8[Si4O10], образующий землистые агрегаты. Цвет белый; блеск агрегатов матовый; излом землистый; твердость 1 (на ощупь жирный); плотность 2,6; легко поглощает влагу, намокая, становится пластичным. Употребляется в керамическом производстве, строительном деле, бумажной промышленности и др. Месторождения в СССР многочисленны: на Украине, Урале, Кавказе и в других местах.

Минералы группы полевых шпатов пользуются широким распространением в земной коре, составляя в ней около 50 %. Являются породообразующими многих магматических и метаморфических горных пород. В трещинах образуют крупные кристаллы. Для всех полевых шпатов характерна спайность совершенная или средняя в двух направлениях под углом, близким к 90o.

Наиболее распространен ортоклаз К[А1Si3О8]. Цвет от бесцветного (санидин), белого, светло-серого до разных оттенков розового и красно-желтого; спайность в двух направлениях под углом 90o (отсюда и название минерала - прямоколющийся).

Минерал того же состава, но кристаллизующийся в триклинной сингонии, называется микроклином. В отличие от ортоклаза у него угол между плоскостями спайности на 20' меньше прямого. По внешним признакам микроклин неотличим от ортоклаза, и только его голубовато-зеленая разновидность - амазонит (микроклин)- по цвету легко отличается от других полевых шпатов.

Лабрадор – ценный поделочный и облицовочный камень.

2.Класс карбонатовобъединяет большое число минералов, для которых характерна реакция с соляной кислотой, сопровождающаяся выделением углекислого газа. Интенсивность реакции помогает различать минералы - карбонаты, близкие по многим свойствам. Они часто светлоокрашенные, со стеклянным блеском; твердостью 3-4,5; спайностью совершенной в трех направлениях. Образование карбонатов связано главным образом с поверхностными химическими и биохимическими процессами, а также с метаморфическими и гидротермальными.

Кальцит, или известковый шпат Са[СО3],-один из наиболее распространенных в земной коре минералов, участвующих в строении как осадочных, так и метаморфических пород. Встречается в виде кристаллических и скрытокристаллических агрегатов различной плотности, в пустотах в виде разнообразных натечных форм, кристаллов и их сростков. Цвет разнообразный - от бесцветного и белого, изредка до черного; блеск стеклянный, на отдельных участках перламутровый; прозрачный или просвечивающий (бесцветные прозрачные кристаллы кальцита, обладающие двулучепреломлением, называются исландским шпатом); твердость 3; плотность 2,7; бурно реагирует ("вскипает") с соляной кислотой. Применение разнообразно: в строительстве, в металлургической и химической промышленностях, как поделочный камень, исландский шпат - в оптике. Месторождения многочисленны.

Реже встречается сидерит Fе [СО3], слагающий кристаллические и землистые агрегаты, образующий округлые конкреции и оолиты. Цвет желтовато-белый, буровато-серый; твердость 3,5-4,5; плотность 4. Реагирует только с подогретой соляной кислотой. Является важной железной рудой. Крупные месторождения СССР на Южном Урале.

3,4. Класс окислов и гидроокислов. По количеству входящих в него минералов занимает одно из первых мест: на его долю приходится около 17% всей массы земной коры. Из них около 12,5% составляют оксиды кремния и 3,9% - оксиды железа. Минералы этого класса образуются как в эндогенных, так и в экзогенных условиях.

Кварц Si02 - широко распространенный в земной коре породообразующий минерал. Кварц встречается в виде зернистых агрегатов, плотных масс, зерен в породах, в пустотах образует кристаллы и их сростки. Кристаллы имеют сложную форму. Цвет разнообразный - бесцветный, белый, серый, встречаются окрашенные разности. Окраска лежит в основе выделения разновидностей кварца: горный хрусталь - бесцветные прозрачные кристаллы; дымчатый кварц - серо-дымчатые, бурые; аметист - фиолетовые кристаллы; морион - черные и др.; просвечивает, реже прозрачен; блеск на гранях стеклянный, на изломе - жирный; излом раковистый или неровный; спайность весьма несовершенная; твердость 7; плотность 2,65.

Кварц выделяется при кристаллизации магмы, выпадает из горячих растворов и паров, возникает в процессе метаморфизма. В экзогенных условиях образуется редко. Химически устойчив в любых условиях.

Халцедон SiO2-скрытокристаллический минерал, образующий плотные, часто натечные массы. Цвет различный, часто желто-бурых тонов. Окрашенные разновидности имеют особые названия: красного или оранжевого цвета – сердолик; с окраской, располагающейся полосами,- агат и др. Блеск восковой, слабожирный, матовый; просвечивает обычно только по краю; излом раковистый; твердость 7, Связан с гидротермальными процессами, сопровождающими вулканическую деятельность, возникает в экзогенных условиях. Кварц и халцедон используются в стекольной, химической промышленностях, в строительстве, горный хрусталь (пьезокварц) -в оптике и радиотехнике. Красиво окрашенные разновидности применяются в ювелирном деле. Месторождения многочисленны.

Опал SiO2.nH2O - аморфный минерал. Содержание воды колеблется обычно в пределах от 1 до 5%, редко увеличиваясь до 34%. Образует плотные, часто натечные массы, слагает некоторые осадочные породы органогенного происхождения. Бесцветный, белый, серый, примесями бывает окрашен в различные цвета; просвечивает; блеск слабостеклянный, слабожирный; излом раковистый или неровный; твердость 5,5-6; плотность 1,9-2,3. Образуется при выветривании силикатов, в результате жизнедеятельности некоторых организмов; выпадает и из горячих растворов, образуя гейзериты. Используется в ювелирном деле как поделочный камень, в строительстве как абразивный материал.

Широко распространены в природе минералы оксида железа.

Гематит, или железный блеск Fe2О3, образует плотные мелкокристаллические агрегаты чешуйчатого строения, скрытокристаллические массы (красный железняк), а также желваки (конкреции) радиально-лучистого или скорлуповатого строения.. Цвет от желто-серого, стально-серого и почти черного у кристаллических разностей- до темно-красного у скрытокристаллических; цвет черты от красно-бурого до вишнево-красного; непрозрачный; блеск от металлического до матового; твердость 5,5-6 (у скрытокристаллических агрегатов меньшая); плотность 5,2.

Магнетит, или магнитный железняк FeО.2О3, или FeFe204, обычно образует плотные кристаллические агрегаты.. По свойствам напоминает кристаллическую разновидность гематита, но отличается от него черным цветом черты и магнитными свойствами.

Образование гематита и магнетита связано главным образом с эндогенными процессами - магматическими, гидротермальными и метаморфическими. Гематит может возникать и в экзогенных условиях (при выветривании, в морской среде). Месторождения руд, связанных с этими минералами, широко распространены. В СССР следует отметить Урал, Украину, Курскую Магнитную Аномалию.

5.К классу сульфидов принадлежат многочисленные минералы - руды металлов.

Галенит,илисвинцовый блеск PbS,-встречается в виде кристаллических агрегатов, реже - отдельных кристаллов и их сростков.. Цвет свинцово-серый; черта серовато-черная, блестящая; блеск металлический; непрозрачный; спайность совершенная твердость 2,5; плотность 7,5.

Сфалерит,илицинковая обманка ZnS, -встречается в виде кристаллических агрегатов. Цвет бурый, редко бесцветный, примесями железа бывает окрашен в черный; черта желтая, бурая; блеск алмазный, металловидный; просвечивает; спайность совершенная, твердость 3,5-4; плотность около 4.

Месторождения галенита и сфалерита, руд свинца и цинка в СССР многочисленны, например, на Северном Кавказе, в Средней Азии, Забайкалье.

Происхождение минералов класса сульфидов связано главным образом с горячеводными растворами (гидротермальными). Они часто встречаются в кварцевых жилах вместе со многими минералами класса самородных элементов.

Пиритили серный колчедан FeS2 хорошо ограненные кристаллы латунно – желтого цвета с металлическим блеском, черта черная, спайность несовершенная, твердость – 6-6.5, удельный вес – 4.9 – 5.2. Пирит в зоне выветривания легко разрушается, поэтому его примесь значительно снижает качество стройматериалов.

6.Класс сульфатов. Известно около 260 минералов группы сульфатов. Происхождение связано с водными растворами; светлые, малая твердость, иногда в кристаллической решетке присутствует вода.

Гипс CaSO4*2H2O – водосодержащий сульфат. Цвет белый, светлые тона. Блеск стеклянный, иногда матовый, спайность совершенная, твердость 1.5 – 2. Заметно растворим в воде. Широко используется в строительстве.

Ангидрит CaSO4 – безводная разновидность. Цвет белый, серый, голубоватый. Блеск – стеклянный. Спайность совершенная. Удельный вес 2.8 – 3. Твердость 3 – 3.5. применяется как поделочный камень, добавка к портландцементу.

7.Класс галоидных соединений. К нему относятся минералы, представляющие соли фтористо-, бромисто-, хлористо-, йодистоводородных кислот. Наиболее распространенными минералами этого класса являются хлориды, образующиеся главным образом при испарении вод поверхностных бассейнов. Известны выделения хлоридов и из вулканических газов.

Галит NaCI - образует плотные кристаллические агрегаты, реже кристаллы кубической формы. Чистый галит бесцветный или белый, чаще окрашен в различные светлые цвета; блеск стеклянный; прозрачный или просвечивает; спайность совершенная, твердость 2; плотность около 2. Гигроскопичен, соленый на вкус. Используется в пищевой промышленности, в химической для получения хлора, натрия и их производных. Основные месторождения СССР находятся на Украине, на Урале, в Донбассе и во многих других местах.

Сильвин КСl - близок по происхождению и по физическим свойствам к галиту, с которым часто образует единые агрегаты. Отличительный признак - горько-соленый вкус. Применяется в основном как сырье для калийных удобрений, в химической промышленности.

Фториды связаны преимущественно с гидротермальными, а также с магматическими и пневматолитовыми процессами (греч. "пневма" - дух, газ). В экзогенных условиях образуются редко. К ним относится флюорит, или плавиковый шпат - CaF2, встречающийся в виде зернистых скоплений, отдельных кристаллов и их сростков. Сингония кубическая. Цвет разнообразный, часто меняющийся в одном кристалле от бесцветного к желтому, зеленому, голубому, фиолетовому; блеск стеклянный; спайность совершенная; твердость 4; плотность 3,18. Используется в металлургической, химической, керамической промышленности, прозрачные разновидности- в оптике. Основные месторождения СССР в Забайкалье и в Средней Азии.

8. Класс фосфатов. Наиболее распространенным минералом является апатит Са5[РO4]3(F,ОН,Cl) (содержание фтора, хлора и гидроксильной группы колеблется). Встречается в виде кристаллических агрегатов и отдельных кристаллов гексагональной сингонии. Цвет бесцветный, чаще бледно-зеленый и зеленовато-голубой; блеск на гранях стеклянный, на изломе жирный; излом неровный; спайность несовершенная; твердость 5; плотность 3,2. Происхождение магматическое. Широко используется для производства удобрения и в химической промышленности. Крупные месторождения СССР в Хибинах, в Прибайкалье.

В поверхностных условиях возникает скрытокристаллический минерал того же состава - фосфорит. Образует землистые агрегаты, конкреции, псевдоморфозы по органическим остаткам. Цвет серый до темно-бурого; при трении выделяет специфический запах. Обычно содержит примесь песчаных и глинистых частиц, представляя собой уже породу. Образуется в бассейнах в результате жизнедеятельности и последующей переработки организмов. Используется, как и апатит, для производства удобрений и в химической промышленности. Месторождения СССР многочисленны в европейской части, в Казахстане и др.

9. Вольфраматы – WO4 используется как тугоплавкий металл.

10Классы самородных элементов. Минералы этого класса не относятся к породообразующим, но многие из них являются ценными полезными ископаемыми.

Из наиболее распространенных минералов первого класса можно назвать серу S, возникающую в процессе возгонки паров при вулканических извержениях, а также в поверхностных условиях при химических изменениях минералов классов сульфидов и сульфатов и биогенным путем. Используется в химической промышленности для получения серной кислоты, в сельском хозяйстве и в ряде других отраслей.

Графит С связан преимущественно с процессами метаморфизма. Широко применяется в металлургии, для производства электродов и др. К этому же классу относятся такие ценные минералы, как алмаз, золото, платина и др.

Поможем в написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой
<== предыдущая лекция | следующая лекция ==>
Основы общей геологии и геохронологии. ФОРМА И РАЗМЕРЫ ЗЕМЛИ | Энергетические причины процесса кристаллизации

Дата добавления: 2013-12-13; Просмотров: 531; Нарушение авторских прав?;


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Читайте также:
studopedia.su - Студопедия (2013 - 2022) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.069 сек.