Параметри генеральної сукупності є величинами сталими, але їх числове значення невідоме. Ці параметри оцінюються параметрами вибірки.
Якщо параметр генеральної сукупності, відповідну йому статистичну оцінку позначають . При цьому , а випадкова величина, що має певний закон розподілу ймовірностей.
Статистична оцінка яка визначається одним числом, називається точковою статистичною оцінкою.
Точкова оцінка називається незміщеною якщо її математичне сподівання дорівнює параметру, що оцінюється:
Нехай вибірка з досліджуваної генеральної сукупності з параметром , через позначимо точкову оцінку яка визначається цією вибіркою.
Точкова оцінка називається обгрунтованою якщо вона збігається по ймовірності до оцінюваного параметра тобто: .
Оцінки, які мають властивості незміщеності та обґрунтованості можуть відрізнятися дисперсіями.
Точкова оцінка називається ефективною якщо вона має мінімальну дисперсію.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав!Последнее добавление