КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Предмет статистики, основные термины и функции статистики. Природа статистических данных
Предмет статистики менялся на протяжении всей истории развития статистической науки, до сих пор ученые не пришли к однозначному ответу по данному вопросу. Предмет статистики – изучение общественных явлений и их анализ. Так английские статистики Дж.Э.Юла, М.Дж.Кендэл считают: «Независимо от того, в какой отрасли знания получены числовые данные, они обладают определенного рода свойствами, для выявления которых может потребоваться особого рода научный метод обработки. Последний известен как статистический метод или статистика». Универсальность статистики как науки связана с тем, что она занимается методами измерения и интерпретации, как в общественных науках, так и в науках о природе. Статистику признают особым методом, используемым в различных сферах деятельности, при решении разнообразных задач, определяемых как «собирание, представление и интерпретация числовых данных». Статистическая методология и практика неразрывно связаны, дополняют и развивают друг друга. Статистическая теория обобщает опыт практической работы, развивает новые идеи и методы, обогащающие практическую статистическую деятельность. Статистическая практика – это научно организованная работа. Таким образом, статистика – наука, изучающая количественную сторону массовых общественных явлений с целью установления закономерностей в неразрывной связи с их качественной стороной в конкретных условиях места и времени в их взаимосвязи и взаимозависимости (Н.Н. Ряузовский «Общая теория статистики»). Суть данного определения связана с шестью основными моментами: 1. Изучаются не все явления, а только общественные и социально-экономические. Эти явления сложны, многообразны (например: производство труд, здравоохранение, культурная деятельность, население и др.), отличаются от явлений природы, которые имеют сравнительно устойчивый характер и повторяемость во времени. 2. Исследуются массовое социально-экономические явления, а не единичные, поскольку закономерности развития проявляются через множество фактов, при обобщении данных при достаточно большом числе единиц (закон больших чисел). 3. Явлениям дается количественная оценка, на основании которой раскрывается их качественное содержание (например: для количественного анализа безработицы применяется показатель занятости и коэффициент безработицы). 4. Числовые характеристики одного и того же явления различны в пространстве и во времени. 5. Социально-экономические явления изучаются в динамике с целью выявления тенденций и направленности развития, прогноза будущих ситуаций. 6. Изучение явлений во взаимосвязи и взаимозависимости. Таким образом, при использовании статистических методов важно помнить о единстве количественной и качественной сторон изучаемого явления. Итак, статистика занимается изучением массовых явлений или совокупностей. Совокупность - представляет собой однородную по какому-либо признаку группу, которая состоит из ядра и окружающих его явлений («слой»). Ядро – концентрированное выражение всех специфических свойств данной группы, отличающих одну совокупность от других. «Слой» - единицы с неполным набором специфических свойств, которые принадлежат к данной совокупности с определенной вероятностью. Например: совокупность – студенты, среди студентов есть: - «идеальный студент» - отлично учится, много читает, активно участвует во внеучебной работе – это ядро. - студент, для которого важны только «интересные», специальные знания; - это один слой. - студент, которому интересная только внеучебная жизнь и т.д. – это другой слой. Таким образом, «качество» одних студентов можно практически безошибочно отнести к тому или иному типу, других - достаточно сложно. Соотношение ядра и его окружения в разных совокупностях различно, и зависит от условий существования совокупности: длительности, устойчивости, взаимодействия с другими совокупностями и др. Однако, ядро должно составлять большинство единиц совокупности, так как оно определяет ее характерные черты. Поскольку статистика занимается изучением явлений в конкретный момент места и времени – она располагает ограниченным числом данных. Статистическая совокупность – это множество объективно существующих единиц изучаемого явления, объединенных единой качественной основой, общей связью, но отличающихся друг от друга отдельными признаками. (Например, совокупность домохозяйств, совокупность семей, совокупность предприятий, фирм, объединений и т.п.). Совокупность необходимо отличать от системы и структуры, поскольку в совокупности нет никакой упорядоченности, здесь все элементы разобщены. Признак – это качественная особенность единицы совокупности. По характеру отображения свойств единиц изучаемой совокупности признаки делятся на две основные группы: 1. Количественные – признаки, имеющие непосредственное количественное выражение, то есть их можно сложить (например: возраст, доход, количество детей, количество лет обучения, стаж работы и т.д.). Предполагают отношения «больше-меньше». 2. Качественные – признаки, не имеющие непосредственного количественного выражения, то есть признаки, которые нельзя сложить (например: пол, профессия, характер труда, отношение к чему-либо). Предполагают отношения «равенства-неравенства». (!не допускают отношения больше-меньше.) Все качественные признаки делятся на: - атрибутивные – являющиеся особенностью данного явления (например: профессия, характер труда и т.д.) - альтернативные – противоположные по значению варианты (например: продукция годна или испорчена, для представителей отдельных возрастных групп существует вероятность дожить или не дожить до следующей возрастной группы; каждое лицо может состоять в браке или нет, мужчина или женщина и т.д.). Кроме того, признаки в статистике могут делиться на разные группы, в зависимости от основания. Основные классификации признаков представлены на рисунке 1.2. Классификации признаков в статистике[1]
Рис. 1.2 Описательные - признаки выражающиеся словесно (форма собственности предприятия, вид используемого сырья, профессия и т.д.) Описательные признаки подразделяют на номинальные, которые нельзя упорядочить, ранжировать (национальность, отраслевая принадлежность предприятия и др.) и порядковые, которые можно ранжировать (тарифный разряд, балл успеваемости студента, рейтинги компаний и др.). Количественные признаки — такие, отдельные значения которых имеют числовое выражение (площадь территории региона, стоимость фондов предприятия, цена товара и тд.). Первичные признаки характеризуют единицу совокупности в целом. Они могут быть измерены, сосчитаны, взвешены и существуют сами по себе независимо от их статистического изучения (численность жителей города, валовой сбор зерна, сумма страховых выплат). Вторичные признаки получают расчетным путем через соотношение первичных признаков. Вторичные признаки являются продуктами человеческого сознания, результатами познания изучаемого объекта. Прямые признаки — свойства, присущие тому объекту, который ими характеризуется. Косвенные признаки — свойства, присущие не самому изучаемому объекту, а другим совокупностям, относящимся к объекту. Альтернативные признаки — те, которые принимают только дна значения (пол человека, место проживания (город—село), признаки обладания или необладания чем-то. Дискретные признаки. имеют только целочисленные значения. Непрерывные признаки — способные принимать любые значения, как целые, так и дробные. К непрерывным относятся все вторичные признаки. Моментные признаки — характеристики состояния, наличия чего-либо на определенный момент времени. Интервальные признаки — характеристики процесса за определенный промежуток времени: год, полугодие, квартал, месяц, сутки и т.д. Особенностью статистического исследования является то, что в нем изучаются только варьирующие признаки, т.е. признаки, принимающие различные значения (для атрибутивных, альтернативных признаков) или имеющие различные количественные уровни у отдельных единиц совокупности. Значимым свойством статистической совокупности является вариация. Вариация – это свойство статистической совокупности, отражающее способность к изменению, обусловленное как внешними, так и внутренними факторами, как связанными с сущностью исследуемого объекта, так и не связанными с ней. Статистическая закономерность – это закономерность, устанавливаемая посредством закона больших чисел в массовых варьируемых явлениях, объединенных в статистическую совокупность. Статистическая закономерность проявляется в тенденциях. Функции статистики: 1. Описательная – с помощью цифр и чисел дается характеристика той или иной ситуации, процесса, явления 2. Объяснительная – выявляются причинно-следственные связи между явлениями и процессами; выявляются факторы, обусловливающие те или иные связи. Природа статистических данных обусловлена 3 основными свойствами: 1. Неопределенность статистических данных 2. Вероятностный характер статистических данных (признак может принять это значение, а может и не принять) 3. Абстрактность статистических данных. [1] Елисеева И.И. Практикум по общей теории статистики. М.: Финансы и статистика, 2008. С.8.
Дата добавления: 2013-12-13; Просмотров: 4497; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |