Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Модели Томсона и Резерфорда




Развитие представлений о строении атома.

Спектр атома водорода по Бору.

Постулаты Бора.

Развитие представлений о строении атома. Модели Томсона и Резерфорда.

Вопросы

Теория атома водорода по Бору

Лекция 10

 

Представление об атомах как неделимых («атомос» - неделимый) мельчайших частицах вещества возникло еще в античные времена, но только в XVIII веке трудами А. Лавуазье, М. В. Ломоносова и других ученых была доказана реальность существования атомов. Но вопрос об их внутреннем устройстве даже не возникал, и атомы по-прежнему считались неделимыми частицами. В XIX веке изучение атомистического строения вещества существенно продвинулось вперед. В 1833 году при исследовании явления электролиза М. Фарадей установил, что ток в растворе электролита это упорядоченное движение заряженных частиц – ионов. Фарадей определил минимальный заряд иона, который был назван элементарным электрическим зарядом (e = 1,60·10–19 Кл).

На основании исследований Фарадея можно было сделать вывод о существовании внутри атомов электрических зарядов.

Большую роль в развитии атомистической теории сыграл выдающийся русский химик Д. И. Менделеев, разработавший в 1869 году периодическую систему элементов, в которой впервые был поставлен вопрос о единой природе атомов.

Важным свидетельством сложной структуры атомов явились спектроскопические исследования, которые привели к открытию линейчатых спектров атомов. В начале XIX века были открыты дискретные спектральные линии в излучении атомов водорода в видимой части спектра, и впоследствии были установлены математические закономерности, связывающие длины волн этих линий (И. Бальмер, 1885 г.).

В 1896 году А. Беккерель обнаружил явление испускания атомами невидимых проникающих излучений, названное радиоактивностью. В последующие годы явление радиоактивности изучалось многими учеными (М. Склодовская-Кюри, П. Кюри, Э. Резерфорд и др.). Было обнаружено, что атомы радиоактивных веществ испускают три вида излучений различной физической природы (альфа-, бета- и гамма-лучи). Альфа-лучи оказались потоком ионов гелия. Бета-лучи – потоком электронов, а гамма-лучи – потоком квантов жесткого рентгеновского излучения.

В 1897 году Дж. Томсон открыл электрон и измерил отношение e / m заряда электрона к массе. Опыты Томсона подтвердили вывод о том, что электроны входят в состав атомов.

Таким образом, на основании всех известных к началу XX века экспериментальных фактов можно было сделать вывод о том, что атомы вещества имеют сложное внутреннее строение. Они представляют собой электронейтральные системы, причем носителями отрицательного заряда атомов являются легкие электроны, масса которых составляет лишь малую долю массы атомов. Основная часть массы атомов связана с положительным зарядом.

Рис. 1. Модель атома Дж. Томсона.

Первая попытка создания модели атома на основе накопленных экспериментальных данных принадлежит Дж. Томсону (1903 г.). Он считал, что атом представляет собой электронейтральную систему шарообразной формы радиусом примерно равным 10–10 м. Положительный заряд атома равномерно распределен по всему объему шара, а отрицательно заряженные электроны находятся внутри него. Через несколько лет в опытах великого английского физика Э. Резерфорда было доказано, что модель Томсона неверна.

 

Первые прямые экспе­ри­мен­ты по исследованию вну­трен­ней структуры атомов были вы­пол­­нены Э. Резерфордом 1909–1911 годах. Резерфорд применил зондирование атома с помощью α-частиц. Масса α-частиц в 7300 раз больше массы электрона, а положительный заряд равен 2e. Резерфорд использовал α-частицы с кинетической энергией около 5 МэВ (скорость таких частиц велика – порядка 107 м/с,).

 

Было обнаружено, что большинство α-частиц проходит через тонкий слой металла, практически не испытывая отклонения. Однако небольшая часть частиц отклоняется на значительные углы, превышающие 30°. Очень редкие α-частицы (приблизительно одна на десять тысяч) испытывали отклонение на углы, близкие к 180°.

Рис. 4. Планетарная модель атома Резерфорда. Показаны круговые орбиты четырех электронов.

Эти результаты были неожи­дан­ными даже для Резерфорда и привели его к выводу, что атом почти пустой, и весь его положительный заряд сосредоточен в малом объеме. Эту часть атома Резерфорд назвал атомным ядром. Так возникла ядерная модель атома.

Опыты Резерфорда привели к выводу, что в центре атома находится плотное положительно заряженное ядро, диаметр которого не превышает 10–14–10–15 м. Это ядро занимает только 10–12 часть полного объема атома, но содержит весь положительный заряд и не менее 99,95 % его массы. Веществу, составляющему ядро атома, следовало приписать колоссальную плотность порядка ρ ≈ 1015 г/см3. Заряд ядра должен быть равен суммарному заряду всех электронов, входящих в состав атома.

Резерфорд предложил планетарную модель атома. Согласно этой модели, в центре атома располагается положительно заряженное ядро, в котором сосредоточена почти вся масса атома. Атом в целом нейтрален. Вокруг ядра, подобно планетам, вращаются под действием кулоновских сил со стороны ядра электроны. Находиться в состоянии покоя электроны не могут, так как они упали бы на ядро. Однако планетарная модель атома оказалась не­спо­собной объяснить факт длительного су­щес­тво­ва­ния атома, т. е. его устойчивость. По законам клас­си­чес­кой электродинамики, движущийся с уско­ре­ни­ем заряд должен излучать электро­маг­нит­ные волны, уносящие энергию.

(1)

Рис. 2. Схема опыта Резерфорда по рассеянию α-частиц. K – свинцовый контейнер с радиоактивным веществом, Э – экран, покрытый сернистым цинком, Ф – золотая фольга, M – микроскоп.

За короткое время (порядка 10–8 с) все электроны в атоме Резерфорда должны растратить всю свою энергию и упасть на ядро. То, что этого не происходит в устойчивых состояниях атома, показывает, что внутренние процессы в атоме не подчиняются классическим законам.

Рис. 3. Рассеяние α-частицы в атоме Томсона (a) и в атоме Резерфорда (b).


Простейшим из атомов является водород. Он содержит единственный электрон. Ядром атома является протон – положительно заряженная частица, заряд которой равен по модулю заряду электрона, а масса в 1836 раз превышает массу электрона. Еще в начале XIX века были открыты дискретные спектральные линии в излучении атома водорода в видимой области (линейчатый спектр). Впоследствии закономерности, которым подчиняются длины волн (или частоты) линейчатого спектра, были хорошо изучены количественно (И. Бальмер, Швейцария, 1885 г.). Совокупность спектральных линий атома водорода в видимой части спектра была названа серией Бальмера. Позже аналогичные серии спектральных линий были обнаружены в ультрафиолетовой и инфракрасной частях спектра. В 1890 году И. Ридберг получил эмпирическую формулу для частот спектральных линий:

 

, т = 1, 2, 3, 4, 5, 6; n = m +1, m +2,… (1)

 

где R = 3,29×1015 с-1постоянная Ридберга. Для серии Бальмера в видимом свете m = 2, n = 3, 4, 5,.... Для ультрафиолетовой серии (серия Лаймана) m = 1, n = 2, 3, 4,.... До Бора механизм возникновения линейчатых спектров и смысл целых чисел, входящих в формулы спектральных линий водорода оставались непонятными.

Датский физик Нильс Бор в 1913 г. предпринял смелую попытку объяснить результаты анализа спектра атома водорода. Это была первая попытка построить качественно новую (квантовую) теорию атома.

 

  1. Постулаты Бора

В квантовой теории атома Бор связал в единое целое ядерную модель Резерфорда, закономерности линейчатых спектров и квантовый характер излучения и поглощения света.

1. Первый постулат Бора (постулат стационарных состо­я­ний): в атоме существуют стаци­о­нар­ные состояния, в которых он не из­лучает энергию. Этим состо­я­ни­ям соответствуют стацио­нар­ные ор­биты электронов. Движение элек­тронов по стационарным орбитам не сопровождается излучением.

Рис.1.Стационарные орбиты атома водорода и образование спектральных серий

(2)

 

 

Рис.2. Энергетические уровни атома и условное изображение процессов поглощения и испускания фотонов.

2. Второй постулат Бора (правило частот): при пе­реходе электрона с одной ста­­ционарной орбиты на дру­гую излу­ча­ет­ся (поглощается) один фотон с энергией, рав­ной раз­ности энергий соответ­ству­ю­щих стационарных со­сто­яний до и после излучения

, (3)

 

- излучение; - поглощение;

Набор состав­ля­ет ли­ней­­чатый спектр атома, n - главное квантовое число.

Опыты Д. Франка и Г. Герца (1913 г.)

 
 


Получено прямое экспериментальное доказательство существования стационарных состояний атома и квантования энергии.

Метод задерживающего потенциала, вакуумная трубка с парами ртути (Р = 13 Па); С1, С2 - ускоряющая и задерживающая сетки.

Подтверждение 1-го постулата:

электроны передают энергию порциями с наименьшим квантом 4,9 эВ.

Подтверждение 2-го постулата:

атомы ртути, получив энергию D Е, должны излучать квант с частотой

- источник ультрафиолетового излучения.

 




Поделиться с друзьями:


Дата добавления: 2013-12-13; Просмотров: 2866; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.028 сек.