Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Геометрический способ сложения сил

Рис.13

Рис. 12

Проекция силы на ось и на плоскость.

Лекция 2. Равновесие системы сил. Пара сил.

В данной лекции рассматриваются следующие вопросы

1. Проекция силы на ось и на плоскость.

2. Геометрический способ сложения сил.

3. Равновесие системы сходящихся сил.

4. Момент силы относительно центра или точки.

5. Теорема Вариньона о моменте равнодействующей.

6. Пара сил.

7. Момент пары.

8. Свойства пар.

9. Сложение пар.

10. Теорема о параллельном переносе силы.

11. Приведение плоской системы сил к данному центру.

12. Условия равновесия произвольной плоской системы сил.

13. Случай параллельных сил.

14. Решение задач.

Изучение этих вопросов необходимо в дальнейшем для изучения центра тяжести, произвольной пространственной системы сил, сил трения скольжения, моментов трения качения, решения задач в дисциплине «Сопротивление материалов».

Перейдем к рассмо­трению аналитического (численного) метода решения задач статики. Этот метод основывается на понятии о проекции силы на ось. Как и для всякого другого вектора, проекцией силы на ось называется скалярная величина, равная взятой с соответствующим знаком длине отрезка, заключенного между проекциями начала и конца силы. Проекция имеет знак плюс, если перемещение от ее начала к концу происходит в положительном направлении оси, и знак минус - если в отрицательном. Из определения следует, что проек­ции данной силы на любые параллельные и одинаково направлен­ные оси равны друг другу. Этим удобно пользоваться при вычисле­нии проекции силы на ось, не лежащую в одной плоскости с силой.

 

Обозначать проекцию силы на ось Ох будем символом . Тогда для сил, изображенных на рис. 12, получим:

, .

Но из чертежа видно, что , .

Следовательно,

, ,

т. е. проекция силы на ось равна произведению модуля силы на косинус угла между направлением силы и положительным на­правлением оси. При этом проекция будет положительной, если угол между направлением силы и положительным направлением оси - острый, и отрицательной, если этот угол - тупой; если сила перпен­дикулярна к оси, то ее проекция на ось равна нулю.

Проекцией силы на плоскость Оху называется вектор , заключенный между проекциями начала и конца силы на эту плоскость (рис. 13). Таким образом, в отличие от проекции силы на ось, проекция силы на плоскость есть величина векторная, так как она характеризуется не только своим чис­ленным значением, но и направлением в плоскости Оху. По модулю , где — угол между направ­лением силы и ее проекции .

В некоторых случаях для нахож­дения проекции силы на ось бывает удобнее найти сначала ее проекцию на плоскость, в которой эта ось ле­жит, а затем найденную проекцию на плоскость спроектировать на данную ось. Например, в случае, изображенном на рис. 13, найдем таким способом, что

Решение многих задач механики связано с известной из векторной алгебры операцией сложения векторов и, в частности, сил. Величину, равную геометрической сумме сил какой-нибудь системы, будем называть главным вектором этой системы сил. Понятие о геометрической сумме сил не следует смешивать с понятием о равнодействующей, для многих систем сил, как мы увидим в дальнейшем, равнодействующей вообще не существует, геометрическую же сумму (главный вектор) можно вычислить для любой системы сил.

Геометрическая сумма (главный вектор) любой системы сил определяется или последовательным сло­жением сил системы по правилу параллелограмма, или построением силового многоугольника. Второй способ является более простым и удобным. Для нахождения этим способом суммы сил, , …, (рис. 14, a), откладываем от произвольной точки О (рис. 14, б) век­тор Oa, изображающий в выбранном масштабе cилу F 1, от точки a откладываем вектор , изображающий силу F 2, от точки b откла­дываем вектор bc, изображающий силу F 3 и т. д.; от конца m пред­последнего вектора откладываем вектор mn, изображающий силу F n.Соединяя начало первого вектора с концом последнего, получаем вектор = , изображающий геометрическую сумму или главный вектор слагаемых сил:

или

От порядка, в котором будут откладываться векторы сил, модуль и направление не зависят. Легко видеть, что проделанное по­строение представляет собою результат последовательного приме­нения правила силового тре­угольника.

<== предыдущая лекция | следующая лекция ==>
Главная | Равновесие системы сходящихся сил
Поделиться с друзьями:


Дата добавления: 2013-12-13; Просмотров: 662; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.