Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

IV квадрант – передний нижний

Проекции разделяются на центральные и параллельные.

Проекции точки.

Лекция 1

  1. Методы проецирования.
  2. Плоскости проекции.
  3. Задание точки на комплексном чертеже Монжа (или эпюр Монжа).
  4. Обратимость чертежа.

Предметом начертательной геометрии является изложение и обоснование способов построения изображений пространственных форм на плоскости и способов решения задач геометрического характера по заданным изображениям этих форм.

Изображения, построенные по правилам, изучаемым в начертательной геометрии, позволяют представить мысленно форму предметов и их взаимное расположение в пространстве, определить их размеры, исследовать геометрические свойства, присущие изображаемому предмету.

Начертательная геометрия передает часть своих выводов в практику выполнения технических чертежей, обеспечивая их выразительность и точность, а, следовательно, и возможность осуществления изображенных предметов.

1.1. Метод проецирования.

Для построения изображения предметов на плоскости пользуются методом проецирования. Слово «проекция» - латинское, от глагола projecere, что в переводе означает «бросать вперед».

Следовательно, проекция – это изображение предмета, «отброшенное» на плоскость при помощи лучей. Спроецировать предмет на плоскость – это значит построить его изображение на плоскости.

Рассмотрим центральное проецирование (рис. 1.1.).

Пусть заданы в пространстве точка S – центр проекции и плоскость П1плоскость проекции. Плоскость П1 и точка S составляют аппарат центральной проекции. Проецируемый треугольник АВС называется оригиналом, или натурой. Чтобы спроецировать заданный оригинал, нужно из центра проекции S через вершины треугольника провести проецирующие лучи до пересечения с плоскостью проекции П1. Точки пересечения А1, В1, С1, называются центральными проекциями вершин А, В, С, на плоскость П1, а треугольник А1В1С1 центральной проекцией треугольника АВС.

Центральные проекции (перспективу) применяют в архитектурных чертежах, в аэрофотосъемке, рисовании и др. Вследствие трудностей при построении изображений и их измерении, а также при чтении чертежей, в машиностроительном черчении центральными проекциями не используются.

Рис. 1.1.

В начертательной геометрии используют метод параллельного проецирования (рис. 1.2.). Как и в предыдущем случае, выбирают плоскость проецирования П1, но вместо центра проекции S задают направление проецирования s, т. е. считают, что точка S – центр проекции – расположена в бесконечности и поэтому проецирующие лучи параллельны между собой. Плоскость П1 и направление s составляют аппарат параллельной проекции. Чтобы спроецировать треугольник АВС на плоскость П1, через вершины А, В, С проводят проецирующие лучи параллельно направлению проецирования s. Треугольник А1В1С1, образованный пересечением лучей АА1, ВВ1, СС1 с плоскостью П1, и будет параллельной проекцией треугольника АВС.

Рис. 1.2.

Параллельные проекции разделяются на прямоугольные и косоугольные. Если проецирующие лучи перпендикулярны к плоскости проекций (рис. 1.3.), то способ проецирования называется прямоугольным, а полученные при этом проекции – прямоугольными, или ортогональными.Если же угол наклона лучей не равен 90º, то подобная параллельная проекция называется косоугольной. В черчении используют, главным образом, прямоугольные проекции.

Рис. 1.3.

1.2 Пространственная (или декартовая) система координат. Плоскости проекций

В данном курсе будут рассмотрены чертежи, получаемые ортогональным проецированием на две или более взаимно перпендикулярные плоскости проекций (комплексный чертеж) и путем перепроецирования вспомогательной проекции предмета на основную аксонометрическую плоскость проекций (аксонометрический чертеж).

Из рис. 1.4 видно, что проекции А1 отвечает бесчисленное множество точек (А, A’, A''), лежащих на проецирующем луче, идущем из А1 перпендикулярно к плоскости проекции П1.

Рис. 1. 4.

Совокупность двух прямоугольных проекций на две взаимно перпендикулярные плоскости позволяет однозначно определить форму и положение предмета в пространстве. Однако в черчении при построении изображений чаще используют три плоскости проекции, и потому рассмотрим законы проецирования на три плоскости проекции.

Пусть заданы три взаимно перпендикулярные плоскости проекций, образующих прямой трехгранный угол (рис.1.5.): П1 – горизонтальная, П2 – фронтальная и П3 – профильная плоскости проекций; линии Оx, Оy, Оz взаимного пересечения плоскостей проекций называются осями проекций, а точка О – началом осей проецирования.

Рис. 1.5.

В пространстве трехгранного угла задана точка А и требуется построить ее проекции на плоскости П1, П2, П3 (точку можно рассматривать как вершину некоторого предмета). Для этого из точки А проводят проецирующие лучи АА1, АА2, АА3, перпендикулярные к плоскостям проекций, до пересечения с ними. В результате пересечения получают А1 – горизонтальную, А2 – фронтальную, А3 – профильную проекции точки А. Прямая АА1 называется горизонтально проецирующим, АА2фронтально проецирующим, АА3профильно проецирующим лучами. Проецирующие лучи АА1 и АА2 определяют плоскость перпендикулярную к оси Ох и ∩ плоскостям П1, П2 пересекает плоскости проекций по прямым А1Ах и А2АХ, перпендикулярно к оси Ох. Точку пересечения этой плоскости с осью Ох обозначают Ах. Рассуждая аналогично, получают прямые А1Ау и А3Ау, перпендикулярные к оси Оу, и прямые А2Az и А3Az, перпендикулярные к оси Оz.

 

1.3 Задание точки на комплексном чертеже Монжа (или эпюр Монжа).

1.3.1 Проецирование точки на две плоскости проекций. Четверти пространства

 

Если информацию о расстоянии точки относительно плоскости проекции дать не с помощью числовой отметки, а с помощью второй проекции точки, построенной на второй плоскости проекций, то чертеж называют двухкартинным или комплексным. Основные принципы построения таких чертежей изложены Гаспаром Монжем - крупным французским геометром конца 18, начала 19 веков. Изложенный Монжем метод ортогонального проецирования на две взаимно перпендикулярные плоскости проекций был и остается основным методом составления технических чертежей.

Две взаимно перпендикулярные плоскости (рис. 1.6) проекций П1 – горизонтальная плоскость проекций, П2 – фронтальная плоскость проекций делят пространство на четыре квадранта (четверти):

I квадрант – передний верхний,

II квадрант – задний верхний,

III квадрант – задний нижний,

<== предыдущая лекция | следующая лекция ==>
Литологические методы исследования | ЛЕКЦИЯ 1. В) горизонтальная А1 и профильная А3 проекции точки всегда расположены на линиях связи, пересекающихся на биссектрисе угла у1Оу3
Поделиться с друзьями:


Дата добавления: 2013-12-13; Просмотров: 518; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.