Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Понятие о зонной теории твердых тел




Взаимодействие электронов и ядер в свободном атоме является весьма сложным. Еще более сложно описать их взаимодействие в кристалле, где каждая частица взаимодействует с огромным числом соседних частиц. Известно, что в изолированном атоме электроны находятся в дискретных энергетических состояниях. Из соотношения неопределенностей для энергии и времени

ΔЕ·Δt

ширина энергетического уровня для электрона в свободном возбужденном атоме (Δt∼10-8 с) составляет величину порядка 10-7 эВ, а в основном состоянии (Δt→∞) –ΔЕ ≃0. Для электронов в кристалле ширина энергетического уровня от 1 до 10 эВ. Почему возрастает неопределенность в определении энергии электронов атома в кристалле?

В свободном атоме энергетические состояния определяются взаимодействием их с ядром своего атома. При сближении двух атомов на расстояние менее 10-10м А электронные оболочки валентных (внешних) электронов настолько перекроются, что энергетические уровни уже не будут соответствовать энергетическим уровням электронов свободного атома. В отличие от изолированных атомов, где энергетические уровни электрона представляют резкие линии (определенные значения), при образовании кристалла происходит расщепление уровней и энергетический спектр электронных состояний представляет собой совокупность энергетических уровней, называемых зоной.

Расщепление уровней присуще всем электронам атома, но величина расщепления для разных уровней разная.

Для внутренних оболочек величина расщепления очень мала и внутренние электроны в кристалле ведут себя практически также как и в изолированных атомах.

В результате расщепления энергетических уровней область возможных значений энергии электронов кристалла разделяется на ряд зон (рис. 181) – разрешенных и запрещенных значений энергии. С уменьшением энергии ширина разрешенных зон убывает, а запрещенных – возрастает.

Энергетическая зона не является непрерывным рядом значений энергий электрона, а представляет собой ряд конкретных дискретных уровней, отстоящих друг от друга на величину порядка 10-22 эВ. Разрешенные энергетические зоны в кристалле могут быть по разному заполнены электронами – в предельных случаях либо полностью свободны, или целиком заполнены.

Возможны переходы электронов из одной разрешенной зоны в другую. Для этого необходимо затратить энергию, численно равную ширине запрещенной зоны. Для внутризонных переходов с уровня на уровень требуется очень небольшая энергия (10-4 – 10-8 эВ). Существование энергетических зон позволяет объяснить разделение твердых веществ по электропроводности на металлы, полупроводники и диэлектрики (рис. 182). Электропроводность металла объясняется тем, что электроны валентной зоны (у металлов она является и зоной проводимости) под действием незначительной сообщенной им энергии могут совершать внутризонные переходы, а поскольку они слабо связаны с узлами кристаллической решетки, то под действием слабого электрического поля могут ускоряться и приобретать дополнительную скорость в направлении противоположном полю, т.е. обеспечивать электрический ток.

 

 

У полупроводников валентная зона полностью заполнена и для вовлечение электронов в электрический ток им необходимо сообщить энергию не меньшую ширины запрещенной зоны, т.е. перевести электроны из валентной в свободную зону. Ширина запрещённой зоны у полупроводников имеет величину порядка 1эВ.

Еще большая энергия требуется для перевода электрона из валентной в зону проводимости (свободную зону) у изоляторов, почему они и не проводят электрический ток.

У металлов две соседние разрешенные зоны могут перекрываться и тогда переход электрона из валентной зоны в свободную по энергетическим затратам эквивалентен внутризонному переходу.

 




Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 535; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.