Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Методы Рунге-Кутты произвольного и четвертого порядков




Любой метод из семейства методов Рунге-Кутты второго порядка (7.30) реализуют по следующей схеме. На каждом шаге, т.е. при каждом = 0, 1, 2,..., вычисляют значения функции

а затем находят шаговую поправку

прибавление которой к результату предыдущего шага дает приближенное значение решения у(х) в точке :

Метод такой структуры называют двухэтапным по количеству вычислений значений функции — правой части уравнения (22.1) — на одном шаге.

Анализ устройства методов Рунге-Кутты второго порядка позволяет представить, в какой форме следует конструировать явный метод Рунге-Кутты произвольного порядка. По аналогии с предыдущим для семейства методов Рунге-Кутты р- го порядка используется запись, состоящая из следующей совокупности формул:

где k = 2,3,..., p (для р -этапного метода). Многочисленные параметры фигурирующие в формулах (7.32), подбираются так, чтобы получаемое методом (7.32) значение совпадало со значением разложения у (хi +1) по формуле Тейлора с погрешностью (без учета погрешностей, совершаемых на предыдущих шагах).

Наиболее употребительным частным случаем семейства методов (7.32) является метод Рунге-Кутты четвертого порядка, относящийся к четырехэтапным и определяемый следующими расчетными формулами*:




Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 273; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.