Интегральный признак Коши. Если j(х) – непрерывная положительная функция, убывающая на промежутке [1;¥), то ряд j(1) + j(2) + + j(n) + = и несобственный интеграл одинаковы в
Если j(х) – непрерывная положительная функция, убывающая на промежутке [1;¥), то ряд j(1) + j(2) + …+ j(n) + … = и несобственный интеграл одинаковы в смысле сходимости.
Пример 26.8. Ряд сходится при a>1 и расходится a£1 т.к. соответствующий несобственный интеграл сходится при a>1 и расходится a£1. Ряд называется общегармоническим рядом.
Следствие. Если f(x) и j(х) – непрерывные функции на интервале (a, b] и то интегралы и ведут себя одинаково в смысле сходимости.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав!Последнее добавление