КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Связь поверхностных интегралов первого и второго рода
Учитывая, что проекции элемента поверхности Si на координатные плоскости имеют вид Si cosγ, Si cosβ, Si cosα, из (13.5) получим: , (27.14) где векторное поле , а - векторное поле единичных нормалей заданно-го направления в каждой точке поверхности. Следовательно, поверхностный интеграл 2-го рода (27.10) равен поверхностному интегралу 1-го рода (27.14). Эта формула предо-ставляет еще одну возможность вычисления поверхностного интеграла 2-го рода. Заметим, что при смене стороны поверхности меняют знак направляющие косинусы нормали, и, соответственно, интеграл в правой части равенства (27.14), который сам по себе, как поверхностный интеграл 1-го рода, от выбора стороны поверхности не зависит.
Пример. Рассмотрим интеграл , где S – внешняя сторона верхней половины сферы x ² + y ² + z ² = R ². Так как радиус сферы, проведенный в любую ее точку, можно считать нормалью к сфере в этой точке, единичный вектор нормали можно задать в виде п = . Тогда, используя формулу (27.14), получаем, что требуется вычислить поверхностный интеграл 1-го рода (Область D – круг с центром в начале координат радиуса R).
Дата добавления: 2014-01-04; Просмотров: 1274; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |