Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Формула Стокса

Свойства циркуляции

Свойство аддитивности циркуляции: циркуляция по контуру Γ есть сумма циркуляций по контурам Γ1 и Γ2, то есть C = C 1 + C 2

Циркуляция вектора А по произвольному контуру Г равна потоку вектора через произвольную поверхность S, ограниченную данным контуром.

— Ротор (вихрь) вектора F.

В случае, если контур плоский, например лежит в плоскости OXY, справедлива формула Грина

,где int Г— плоскость, ограничиваемая контуром

где i, j и k — единичные орты для осей x, y и z соответственно.

Пример 5. Найти циркуляцию вектора по окружности в положительном направлении.

Решение: Циркуляция вектора равна

>> syms t a

>> int(a^2*sin(t)^2+a^2*cos(t)^2,t,0,2*pi)

ans = 2*a^2*pi

<== предыдущая лекция | следующая лекция ==>
Циркуляция | Оператор Гамильтона и векторные дифференциальные операции второго порядка
Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 298; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.