КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Уравнения линии с распределенными параметрами
Понятие об электрических цепях с распределенными параметрами ЦЕПИ С РАСПРЕДЕЛЕННЫМИ ПАРАМЕТРАМИ ЛЕКЦИЯ №36
Строго говоря, всегда параметры электрической цепи в той или иной степени распределены вдоль ее участков, и только абстрагируясь от действительности можно предполагать, что такие параметры цепи как активное сопротивление – R, индуктивность – L и емкость – C сосредоточены в ее определенных участках. Во многих случаях такое допущение не приводит к существенным ошибкам в результатах проводимого анализа. Ранее мы имели дело с цепями с сосредоточенными параметрами. Однако, такой подход не всегда возможен. Например, рассматривая электромагнитные процессы, происходящие в электрических линиях, при помощи которых электрическая энергия или сигналы передаются на расстояние, необходимо иметь ввиду, что электрические и магнитные поля распределены по всей длине линии, и превращение электрической энергии в тепло также происходит по всей длине линии. Критерием необходимости рассматривать цепь в качестве цепи с распределенными параметрами является то, что интервал времени распространения электромагнитной волны вдоль всей цепи и интервал времени, в течение которого токи и напряжения меняются на заметную величину, должны быть соизмеримыми. Токи напряжения в таких цепях являются функциями двух независимых переменных: времени – t и расстояния – x, отсчитываемого вдоль направления цепи. Уравнения, описывающие процессы в таких цепях, являются уравнениями в частных производных. Примерами являются линии передачи электрической энергии, линии связи, антенные вводы радиотехнических устройств, обмотки электрических машин при воздействии на них импульсных токов и напряжений. Параметры цепи могут быть распределены неравномерно вдоль линии. Однако во многих случаях этим можно пренебречь и считать параметры равномерно распределенными. Такие линии называются однородными. В дальнейшем под величинами R, L, C, G, M будем понимать активное сопротивление, индуктивность и т.д., приходящиеся на единицу длины, и будем обозначать их через R 0, L 0, C 0, G 0, M 0. В общем случае эти параметры зависят от частоты, например, увеличение активного сопротивления и индуктивности с ростом частоты вследствие поверхностного эффекта. Однако для простоты в дальнейшем это учитывать не будем.
Напряжения и ток в линии являются функциями двух независимых переменных – пространственной координаты x, определяющей место наблюдения, и времени t, определяющей момент наблюдения. Считается, что направление координаты x совпадает с осью линии. Необходимо найти пространственно-временное распределение величины тока в линии i (x, t) и напряжения между проводами u (x, t). В этом случае также можно определить процесс передачи энергии по линии, когда приемники и источники находятся на обоих концах линии. Приняв положительное направление тока в линии слева направо, условимся называть "началом" левый конец линии. Расстояние от начальной точки до произвольной обозначим через x, а от конца – через x '. Вся длина линии l = x + x '. Выделим элементарный участок D x на расстоянии x от начала. Пользуясь первичными параметрами R 0, L 0, C 0, G 0, отнесенными к единице длины линии, представим приближенно участок D x в виде схемы замещения (рис. 13.1).
Обозначим: u – напряжение между верхним и нижним проводом в точке x; D u – приращение напряжения на участке D x; i – ток в точке x; D i – приращение тока на участке D x. Уравнения для приращений напряжения и тока на элементе D x линии запишутся: (13.1) Это уравнение в частных производных. По мере стремления D x к нулю степень точности этих уравнений повышается, причем величина второго порядка малости в правой части второго уравнения может быть опущена. В этом случае длинная линия рассматривается как цепная схема с бесконечно большим количеством звеньев, электрические параметры которых бесконечно малы. Разделив обе части уравнений на D x и перейдя к пределу D x ® 0, получим дифференциальные уравнения линии (13.2) Эти уравнения носят название телеграфных. Если за начало отсчета принять конец линии, т.е. ввести координату x ', уравнения примут вид: (13.3) Уравнения (13.2) и (13.3) решаются однозначно при использовании начальных и граничных условий. Начальными условиями будут служить значения напряжения и тока в начале и конце линии в момент времени, принятый за нуль. Граничные условия определяются связями между напряжением и током в начале или в конце линии и зависят от заданного режима работы линии.
Дата добавления: 2014-01-04; Просмотров: 2132; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |