Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Перенос загрязнений в атмосфере

Свинец

Твердые частицы

Ежегодно мировое потребление свинца составляет 3 млн. т, из них 40% используют для производства аккумуляторных батарей, 20% - для производства алкила свинца - присадки к бензину, 12% - применяют в строительстве, 6% в качестве покрытия кабелей и 22% - для других целей. Производство аккумуляторных батарей, потребляющее около половины производимого свинца, относительно мало влияет на загрязнение окружающей среды, так как примерно 80% батарей поступает на вторичную переработку. При выплавке свинца выделяется много загрязнений, и хотя их воздействие обычно локализовано, загрязнение воды и воздуха наблюдается на расстоянии до 100 км от этих заводов. Присутствие свинца в выхлопе автомобильных двигателей делает их наиболее серьезными источниками загрязнения окружающей среды. Антидетонатор - тетраметил- или тетраэтилсвинец - прибавляют к большинству бензинов, начиная с 1923 г., в количестве 80 мг/л. При движении автомобиля от 25 до 75% этого свинца в зависимости от условий движения выбрасывается в атмосферу. Хотя основная масса его осаждается на землю, заметное количество этого загрязняющего вещества содержится и в атмосфере. Города, подобные Лос-Анджелесу, содержат в воздухе 5 мкг/см3, и это количество увеличивается примерно на 5% в год.
Важным свойством топлива является его способность противостоять преждевременному воспламенению в камере сгорания. Детонационную характеристику топлива определяют в стандартном одноцилиндровом опытном двигателе при переменном давлении и оценивают значением октанового числа. Это эмпирическая шкала, введенная в 1927 г., определяет расчетную величину от нуля для н -гептана, весьма подверженного детонации, до 100 для изооктана (2,2,4-триметилпентана), который является углеводородом, стойким к детонации. Октановое число данного топлива означает содержание изооктана (в %) в смеси с н-гептаном, обладающей такими же детонационными характеристиками, как и горючее в опытном двигателе, работающее при заданных условиях. Со времени введения шкалы были найдены эталоны, превосходящие изооктан, и октановая шкала в настоящее время экстраполирована до 120 (например, ароматические углеводороды - толуол, этилбензол - имеют исключительно высокие октановые числа).
Бензин, полученный в процессе прямой перегонки нефти, в основном состоит из парафинов с октановым числом в пределах 50-70. Такое низкооктановое топливо ограничивает степень сжатия и термодинамическую эффективность двигателя. В современных сортах бензина такие недостатки устраняются обработкой, в результате которой углеводороды изомеризуются с образованием более благоприятных структур, а также путем использования добавок для повышения октанового числа.
Тетраэтилсвинец - первое вещество, добавленное в бензин в качестве антидетонатора. Его промышленный выпуск начался в 1923 г. и до сих пор он остается основной присадкой подобного рода. Применяются также и другие алкилы свинца. Механизм антидетонационного действия алкилов свинца до конца не ясен. Антидетонационная добавка - летучая жидкость, поступающая в цилиндр двигателя в виде паров, смешанных с топливной смесью. Вследствие возрастания температуры происходит распад тетраэтилсвинца и образуется туман из частиц твердого оксида свинца. Предполагают, что эти твердые частицы блокируют активные атомы кислорода (последние являются инициаторами цепной реакции, приводящей к детонации).
Одно из наиболее неприятных последствий попадания свинца в атмосферу с выхлопными газами заключается в накапливании его в почве и в растительности вдоль узких полос по сторонам автомобильных дорог. Повышенное одержание свинца регистрируется в траве на расстоянии свыше 200 м от дорог, а в образцах, взятых около дороги, оно достигало 0.1%. Способность растений поглощать и накапливать свинец хорошо известна и исследована. Так, содержание свинца в золе хвои может составлять 0.31%, тогда как в почве его количество не превышало 4.10-3%. Относительно высокий процент свинца в растениях достигается не только за счет поглощения его из почвы, но и в результате абсорбции из воздуха. Предотвращение загрязнения свинцом в результате выхлопа автомобильных двигателей является одной из наиболее важных проблем охраны окружающей среды, особенно в условиях города. Введение контроля автомобильных выбросов обеспечило незначительный прогресс существующей технологии. В основном все усовершенствования ограничивались установкой приспособлений, позволяющих экономить топливо, а не снижать токсичность выбросов. Такое направление поисков обусловлено ограниченными возможностями в этой области, так как производство топлива и транспортных средств зависит от поставок традиционных видов сырья и материалов. Снизить выделения свинца можно установкой фильтра или заградителя на выхлопной системе для улавливания частиц, содержащих свинец. Размеры таких частиц менее 1 мкм. Частицы такого размера наиболее многочисленны, но на их долю приходится всего 5% общей массы выделяющегося свинца. Так как в среднем автомобиль ежегодно выбрасывает около 3 кг свинцовых частиц, очевидно, что срок эффективного действия фильтра, улавливающего эти мелкие частицы, будет непродолжительным.
Простое уменьшение количества свинца в бензине, скорее всего, окажется неэффективным, так как оно приведет к снижению мощности двигателей и к увеличению выброса других загрязняющих веществ, таких как СО. Современные исследования в области технологии переработки нефти направлены в основном на получение высооктанового топлива, что позволит отказаться от применения свинца. Существует несколько процессов переработки нефти, которые увеличивают содержание ароматических углеводородов. Современный бензин без добавок свинца имеет октановое число 90-91. Путем очистки бензина оно может быть увеличено до 95 и более (естественно это отразится на стоимости топлива). Установлено, что работа двигателя на чистом бензине с октановым числом до 97 обеспечивает экономию топлива более чем на 15% по сравнению с работой на бензине с октановым числом 91. Эти исследования показали, что по мере увеличения октанового числа требования к сырой нефти для удовлетворения потребностей в бензине снижаются, что является важным фактором в решении энергетической проблемы. Кроме того, применение свободного от свинца бензина вдвое увеличивает срок работы свечей зажигания, глушителей, выхлопных труб и уменьшает коррозию. Топливо, содержащее свинец, не обладает этими достоинствами и образует отложения, количество которых возрастает с увеличением содержания свинца.
Поскольку в настоящее время нет других добавок, предлагается увеличить октановое число путем добавления этанола или метанола к бензину, однако для достижения значительного эффекта необходимы добавки около 10%. Применение этанола ограничено, поскольку его производство из зерна признано неэкономичным, а использование в качестве исходного сырья сахарного тростника имеет четко выраженное региональное применение. Лучшим решением является каталитическое превращение природного газа в метанол. Если производство организовано вблизи потребителя, исключаются затраты на трубопровод или другой вид транспорта жидкого метанола. С учетом роста цен на нефть это предложение может соперничать с другими решениями и заслуживает дальнейшего изучения.

Неравномерность нагревания воздуха с помощью солнечной энергии служит основной причиной общей циркуляции атмосферы, представляющую собой сложную систему воздушных течений над Землей. Благодаря такой циркуляции усредняется состав основных компонентов воздуха, а воздушные течения переносят водяной пар с океанов в континентальные зоны.
Кроме этого в нижних слоях атмосферы возникают многочисленные местные циркуляции, связанные с особенностями нагревания атмосферы в отдельных районах, которые способствуют переносу и перемешиванию загрязняющих веществ от разных источников. Таким образом, перенос вредных веществ (т.е. загрязнение атмосферы)происходит не по воле случая, а в соответствии с хорошо известными механизмами, связанными с различными параметрами, которые контролируют метеорологические явления.
При средней скорости воздушного потока 35 м/с, наблюдаемой вблизи тропопаузы, перенос загрязнений, находящихся на этом уровне, вокруг земного шара осуществляется за 12 суток. Это объясняет, почему примеси, образовавшиеся при атомном взрыве или извержении вулкана, довольно скоро распространяются по всей планете.
Наиболее быстрое распространение загрязнений происходит в тропосфере. В то же время, в стратосфере, где очень маленькая скорость вертикальных движений воздуха, частицы могут оставаться годами. Согласно оценкам, средняя продолжительность пребывания неосаждающейся (легкой) частицы равна 2 годам в стратосфере, 4 месяцам вблизи тропопаузы, 30 суток в верхней тропосфере и только 6-10 суток в нижней тропосфере (3 км и менее).
Проведенные исследования показали, что продолжительность пребывания газов антропогенного происхождения в тропосфере достигает 2-4 месяцев. Это явление тем более тревожно, что речь идет о соединениях, для которых не существует эффективного биохимического механизма удаления их из атмосферы с последующей трансформацией или накоплением в воде или почве. В первую очередь это касается малоактивных летучих органических веществ, радиоактивных изотопов с большим и средним периодом полураспада, которые могут практически бесконечно долго существовать в атмосфере. Следовательно, появляется опасность накопления таких радиоактивных элементов в атмосфере. Однако почти во всех случаях атмосферные примеси не находятся долго в тропосфере или стратосфере. Твердые частицы рано или поздно достигают земной поверхности либо под действием силы тяжести, либо в результате захвата их осадками. Таким образом, эти частицы попадают в почву и океаны. Газообразные примеси также растворяются в воде или поглощаются почвой. Впоследствии они трансформируются растениями или микроорганизмами в другие вещества.

Парниковый эффект - это повышение температуры поверхности планеты и нижних слоев атмосферы планеты из-за того, что атмосфера пропускает солнечное излучение (как говорят, атмосфера прозрачна для солнечного излучения) и задерживает тепловое излучение планеты. Почему это может происходить? Тепловое излучение планеты задерживается (поглощается) сложными молекулами, например углекислым газом СО2, водой Н2О и другими. (Атмосфера прозрачна для солнечного излучения и непрозрачна для теплового излучения планеты). Именно вследствие парникового эффекта температура Венеры повышается с Т = - 44 С° до Т= 462 С°. Венера как бы укрыта слоем углекислого газа, как овощи в парнике - полиэтиленовой пленкой. Парниковый эффект играет очень важную роль в формировании климата Земли. Например, на Титане из-за парникового эффекта температура повышается на 3 - 5 С°.

Солнечная радиация - это солнечное излучение. Уровень солнечной радиации измеряется на 1 м2 земной поверхности в единицу времени (МДж/м2). Ее распределение зависит от широты местности, которой обусловлен угол падения солнечных лучей, и продолжительности дня, что в свою очередь влияет на продолжительность и интенсивность солнечного сияния, показатели суммарной солнечной радиации и среднюю температуру воздуха за год. 20% солнечной радиации, поступающей на Землю, отражается атмосферой. Остальная ее часть достигает земной поверхности - это прямая солнечная радиация. Часть радиации поглощается и рассеивается каплями воды, льда, частицами пыли, облаками. Такая радиация называется рассеянной. Прямая и рассеянная составляют суммарную. Часть радиации отражается от поверхности Земли - это отраженная радиация. Движения воздушных масс. Воздушная масса - большой объем воздуха в тропосфере, обладающий характерными свойствами (температурой, влажностью, прозрачностью). Образование различных типов воздушных масс происходит в результате неравномерного нагревания земной поверхности. Вся система движения воздуха называется атмосферной циркуляцией. Между воздушными массами располагаются переходные области шириной в несколько десятков километров. Эти области называются атмосферными фронтами. Атмосферные фронты находятся в постоянном движении. При этом происходит изменение погоды, смена воздушных масс. Фронты делятся на теплые и холодные. Теплый фронт образуется, когда теплый воздух наступает на холодный и оттесняет его. Холодный фронт образуется, когда холодный воздух перемещается в сторону теплого и оттесняет его. Теплый фронт приносит потепление, осадки. Холодный фронт приносит похолодание и прояснение. С атмосферными фронтами связано развитие циклонов и антициклонов. Подстилающая земная поверхность влияет на распределение солнечной радиации, движение воздушных масс. Анализ теплой биосферы мелового периода как аналога прогнозируемого потепления показал, что воздействия основных климатообразующих факторов (помимо углекислого газа) недостаточно для объяснения потепления такого масштаба в прошлом.

Парниковый эффект необходимой величины отвечал бы многократному увеличению содержания СО2 в атмосфере. Толчком грандиозных климатических изменений в этот период развития Земли, вероятнее всего, стала положительная обратная связь между ростом температуры океанов и морей и увеличением концентрации атмосферной углекислоты.

Реакция молодых деревьев сосны, молодых апельсиновых деревьев, пшеницы на увеличение содержания СО2 в окружающей среде в диапазоне от 400 до 800 ppm почти линейна и положительна. Эти данные можно легко перенести на различные уровни обогащения СО2 и на различные виды растений. К воздействию возрастающего количества углекислого газа в атмосфере относится и увеличение массы лесов США (на 30% с 1950 г.). Больший стимулирующий эффект рост СО2 производит на растения, произрастающие в более засушливых (стрессовых) условиях. А интенсивный рост растительных сообществ, как утверждают авторы обзора, неизбежно приводит к увеличению суммарной массы животных и оказывает положительное воздействие на биоразнообразие в целом. Отсюда следует оптимистичный вывод: “В результате увеличения атмосферного СО2 мы живем во все более и более благоприятных условиях окружающей среды. Наши дети будут наслаждаться жизнью на Земле с гораздо большим количеством растений и животных. Это замечательный и непредвиденный подарок от индустриальной революции”. Безусловно, колебания уровня СО2 в атмосфере имели место и в прошлые эпохи, однако никогда эти изменения не происходили столь быстро. Но если в прошлом климатическая и биологическая системы Земли в силу постепенности изменений состава атмосферы “успевали” перейти в новое устойчивое состояние и находились в квазиравновесии, то в современный период при интенсивном, чрезвычайно быстром изменении газового состава атмосферы все земные системы выходят из стационарного состояния. И если даже встать на позицию авторов, отрицающих гипотезу глобального потепления, нельзя не отметить, что последствия такого “выхода из квазистационара”, в частности климатические изменения, могут быть самыми серьезными. Кроме того, согласно некоторым прогнозам, после достижения максимума концентрации СО2 в атмосфере она начнет падать из-за уменьшения антропогенных выбросов, поглощения углекислоты Мировым океаном и биотой. В этом случае растениям вновь придется адаптироваться к изменившейся среде обитания. В связи с этим чрезвычайно интересны некоторые результаты математического моделирования сложных последствий возможного изменения климата Земли. Эксперименты с трехмерной моделью объединенной системы океан-атмосфера, проведенные американскими исследователями, показали, что в ответ на потепление термохалинная северо-атлантическая циркуляция (Северо-Атлантическое течение) замедляется. Критическая величина концентрации СО2, вызывающая такой эффект, лежит между двумя и четырьмя доиндустриальными величинами содержания СО2 в атмосфере (она равна 280 ppm, а современная концентрация составляет около 360 ppm).

Используя более простую модель системы океан-атмосфера, специалисты провели детальный математический анализ описанных выше процессов. Согласно их расчетам, при росте концентрации углекислого газа на 1% в год (что соответствует современным темпам) Северо-Атлантическое течение замедляется, а при содержании СО2, равном 750 ppm, наступает его коллапс - полное прекращение циркуляции. При более медленном росте содержания углекислоты в атмосфере (и температуры воздуха) - например на 0.5% в год, при достижении концентрации 750 ppm циркуляция замедляется, но затем медленно восстанавливается. В случае ускоренного роста парниковых газов в атмосфере и связанного с ним потепления Северо-Атлантическое течение разрушается при более низких концентрациях СО2 - 650 ppm. Причины изменения течения в том, что потепление наземного воздуха вызывает рост температуры поверхностных слоев воды, а также повышение давления насыщенного пара в северных районах, а значит, и усиленную конденсацию, из-за чего возрастает масса распресненной воды на поверхности океана в Северной Атлантике. Оба процесса приводят к усилению стратификации водяного столба и замедляют (или вовсе делают невозможным) постоянное формирование холодных глубинных вод в северной части Атлантики, когда поверхностные воды, охлаждаясь и становясь более тяжелыми, опускаются в придонные области и затем медленно перемещаются к тропикам.

Исследования такого рода последствий потепления атмосферы, проведенные недавно Р.Вудом с сотрудниками, дает еще более интересную картину возможных событий. Помимо уменьшения общего атлантического переноса на 25% при современных темпах роста парниковых газов произойдет “отключение” конвекции в Лабрадорском море - одном из двух северных центров формирования холодных глубинных вод. Причем это может иметь место уже в период от 2000 до 2030 г. Указанные колебания Северо-Атлантического течения могут повлечь за собой весьма серьезные последствия. В частности, при отклонении распределения потоков тепла и температуры от современного в атлантическом регионе Северного полушария средние температуры приземного воздуха над Европой могут существенно понизиться. Более того, изменения в скорости Северо-Атлантического течения и нагрева поверхностных вод могут уменьшить поглощение океаном СО2 (по расчетам упомянутых специалистов - на 30% при удвоении концентрации углекислого газа в воздухе), что следует учитывать и в прогнозах будущего состояния атмосферы, и в сценариях выбросов парниковых газов. Существенные изменения могут произойти и в морских экосистемах, включая популяции рыб и морских птиц, зависящих не только от специфических климатических условий, но и от питательных веществ, которые выносятся к поверхности холодными океаническими течениями. Здесь мы хотим подчеркнуть чрезвычайно важный момент, упомянутый выше: последствия роста парниковых газов в атмосфере, как видно, могут быть гораздо сложнее, чем однородное потепление приземной атмосферы.

При моделировании обмена углекислым газом приходится учитывать и воздействие на газоперенос состояния границы раздела океана и атмосферы. В течение ряда лет в лабораторных и натурных экспериментах исследовались интенсивность переноса СО2 в системе вода-воздух. Рассматривалось воздействие на газообмен ветроволновых условий и дисперсной среды, образующейся вблизи границы раздела двух фаз (брызги над поверхностью, пена, воздушные пузырьки в толще воды). Оказалось, что скорость газопереноса при изменении характера волнения от гравитационно-капиллярного к гравитационному существенно увеличивается. Этот эффект (помимо повышения температуры поверхностного слоя океана) может внести дополнительный вклад в поток углекислоты между океаном и атмосферой. С другой стороны, существенным стоком СО2 из атмосферы являются осадки, интенсивно вымывающие, как показали наши исследования, помимо других газовых примесей и углекислый газ. Расчеты с использованием данных о содержании растворенного углекислого газа в дождевой воде и годовой сумме осадков показали, что в океан ежегодно с дождями может поступать 0.2-1 Гт СО2, а общее количество углекислого газа, вымываемого из атмосферы, может достигать величины 0.7-2.0 Гт.

Поскольку атмосферный углекислый газ частично поглощают осадки и поверхностные пресные воды, в почвенном растворе повышается содержание СО2 и как следствие этого происходит подкисление среды. В опытах, проведенных в лаборатории, была предпринята попытка исследовать особенности воздействия растворенного в воде СО2 на накопление биомассы растениями. Проростки пшеницы выращивались на стандартных водных питательных средах, в которых в качестве дополнительных источников углерода, помимо атмосферного, служили растворенный молекулярный СО2 и бикарбонат-ион в различных концентрациях. Это достигалось варьированием времени насыщения водного раствора газообразным углекислым газом. Оказалось, что первоначальное повышение концентрации СО2 в питательной среде приводит к стимулированию наземной и корневой массы растений пшеницы. Однако при 2-3-кратном превышении над нормальным содержания растворенного углекислого газа наблюдалось торможение роста корней растений с изменением их морфологии. Возможно, при значительном подкислении среды происходит уменьшение ассимиляции других питательных веществ (азота, фосфора, калия, магния, кальция). Таким образом, опосредованное воздействие повышенной концентрации СО2 должно приниматься во внимание при оценке их влияния на рост растений.

Приведенные в приложении к петиции данные об интенсификации роста растений различных видов и возраста оставляют без ответа вопрос об условиях обеспеченности объектов изучения биогенными элементами. Следует подчеркнуть, что изменение концентрации СО2 должно быть строго сбалансировано с потреблением азота, фосфора, других питательных веществ, света, воды в продукционном процессе без нарушения экологического равновесия. Так, усиленный рост растений при высоких концентрациях СО2 наблюдался в среде, богатой питательными веществами. Например, на заболоченных землях в эстуарии Чесапикского залива (юго-запад США), где произрастают в основном С3-растения, увеличение СО2 в воздухе до 700 ppm приводило к интенсификации роста растений и увеличению плотности их произрастания. Анализ более 700 агрономических работ показал, что при больших концентрациях СО2 в среде, урожай зерновых в среднем был больше на 34% (там, где в почву вносилось достаточное количество удобрений и воды - ресурсов, имеющихся в изобилии только в развитых странах). Чтобы поднять продуктивность сельскохозяйственных культур в условиях роста углекислоты в воздухе, очевидно понадобится не только значительное количество удобрений, но и средств защиты растений (гербициды, инсектициды, фунгициды и т.д.), а также обширные ирригационные работы. Резонно опасаться, что стоимость этих мероприятий и последствия для окружающей среды окажутся слишком существенными и несоразмерными. Исследования выявили также роль конкуренции в экосистемах, которая приводит к снижению стимулирующего эффекта высоких концентраций СО2. Действительно, саженцы деревьев одного вида в умеренном климате (Новая Англия, США) и тропиках росли лучше при высокой концентрации атмосферного СО2, однако при совместном выращивании саженцев разных видов продуктивность таких сообществ при тех же условиях не повышалась. Вероятно, конкуренция за питательные вещества сдерживает реакцию растений на повышение углекислого газа. Исследования показывают, что в листьях растений, сформировавшихся в условиях высоких концентраций углекислого газа, меньше содержание азота, а следовательно, белка. Поэтому ценность такой растительности как пищи для животных и насекомых значительно снижена. Действительно, в экспериментах насекомые начинали съедать существенно больше листьев этих растений по сравнению с растительностью в условиях нормальной концентрации СО2. Причем у насекомых замедляется развитие, они становятся более уязвимыми для хищников и паразитов. В результате популяция травоядных насекомых сокращается, сужается и пищевая база многих хищников. Могут измениться и другие экологические взаимосвязи. Установлено, например, что при повышенном уровне диоксида углерода ускоряется рост, цветение и старение растений. Изменение периода цветения может в свою очередь “сорвать” опыление растений из-за несовпадения цветения с пиком активности и распространенности опылителей. Поэтому не приходится говорить о росте видоразноообразия в условиях повышенной концентрации СО2. В целом на основании приведенных результатов научных исследований можно видеть, что будущая атмосфера Земли с высоким содержанием двуокиси углерода окажет прямое и значительное влияние на состав и функционирование экосистем. Изучение адаптивной стратегии и реакции растений на колебания основных факторов, влияющих на изменение климата и характеристики окружающей среды, позволило уточнить некоторые прогнозы. Еще в 1987 г. был подготовлен сценарий агроклиматических последствий современных изменений климата и роста СО2 в атмосфере Земли для Северной Америки. Согласно проведенным оценкам, при увеличении концентрации СО2 до 400 ppm и росте средней глобальной температуры у земной поверхности на 0.5°С урожайность пшеницы в этих условиях увеличится на 7-10%. Но рост температур воздуха в северных широтах особенно проявится в зимнее время и вызовет чрезвычайно неблагоприятные частые зимние оттепели, которые могут привести к ослаблению морозостойкости озимых культур, вымерзанию посевов и повреждению их ледяной коркой. Прогнозируемое увеличение теплого периода вызовет необходимость селекции новых сортов с более продолжительным вегетационным периодом.

Что касается прогнозов урожайности основных сельскохозяйственных культур для России, то происходящий рост средних приземных температур воздуха и рост СО2 в атмосфере, казалось бы, должны иметь положительный эффект. Воздействие только роста углекислого газа в атмосфере может обеспечить рост продуктивности ведущих сельскохозяйственных культур - С3-растений (хлебных злаков, картофеля, свеклы и др.) - в среднем на 20-30%, тогда как для С4-растений (кукурузы, проса, сорго, амаранта) этот рост незначителен. Однако потепление, очевидно, повлечет за собой снижение уровня атмосферного увлажнения примерно на 10%, что осложнит земледелие особенно в южной части Европейской территории, в Поволжье, в степных районах Западной и Восточной Сибири. Здесь можно ожидать не только снижения сбора продукции с единицы площади, но и развития эрозионных процессов (особенно ветровых), ухудшения качества почв, в том числе потери ими гумуса, засоления, опустынивания значительных территорий. Было установлено, что насыщение приземного слоя атмосферы толщиной до 1 м избытком СО2 может откликнуться “эффектом пустыни”. Этот слой поглощает восходящие тепловые потоки, поэтому в результате его обогащения диоксидом углерода (в 1.5 раза в сравнении с нынешней нормой) локальная температура воздуха непосредственно у земной поверхности станет на несколько градусов выше средней температуры. Интенсивность испарения влаги из почвы увеличится, что приведет к ее иссушению. Из-за этого в целом по стране может снизиться производство зерна, кормов, сахарной свеклы, картофеля, семян подсолнечника, овощей и т.д. В результате изменятся пропорции между размещением населения и производством основных видов сельскохозяйственной продукции.

Наземные экосистемы, таким образом, весьма чувствительны к увеличению СО2 в атмосфере, причем, поглощая избыточный углерод в процессе фотосинтеза, в свою очередь способствуют и росту атмосферного углекислого газа. Не менее важную роль в формировании уровня СО2 в атмосфере играют процессы почвенного дыхания. Известно, что современное потепление климата вызывает усиленное выделение неорганического углерода из почв (особенно в северных широтах). Модельные расчеты [ 19 ], проведенные с целью оценки отклика наземных экосистем на глобальные изменения климата и уровня СО2 в атмосфере, показали, что в случае только роста СО2 (без климатических изменений) стимуляция фотосинтеза уменьшается при высоких значениях СО2, но выделение углерода из почв растет по мере его аккумуляции в растительности и почвах. Если содержание СО2 в атмосфере стабилизируется, чистая продукция экосистем (результирующий поток углерода между биотой и атмосферой) быстро падает до нуля, так как фотосинтез компенсируется дыханием растений и почв. Ответом наземных экосистем на климатические изменения без воздействия роста СО2, согласно этим расчетам, может стать уменьшение глобального потока углерода из атмосферы в биоту из-за усиления дыхания почв в северных экосистемах и уменьшения чистой первичной продукции в тропиках в результате падения влагосодержания почв. Этот результат подтверждается оценками, согласно которым воздействие потепления на дыхание почв превалирует над воздействием его на рост растений и уменьшает почвенный запас углерода. Совместное воздействие глобального потепления и роста СО2 в атмосфере может увеличить глобальную чистую продукцию экосистем и сток углерода в биоту, однако значительное возрастание почвенного дыхания может компенсировать этот сток в зимний и весенний периоды. Немаловажно, что эти прогнозы реакции наземных экосистем существенно зависят от видового состава растительных сообществ, обеспеченности питательными веществами, возраста древесных пород и значительно варьируют в пределах климатических зон.

Со времени проведения Конференции ООН по вопросам окружающей среды, состоявшейся в 1972 г. в Стокгольме, представления об изменениях, происходящих в окружающей среде, претерпели кардинальные изменения. От понятия о непосредственном ущербе, наносимом благосостоянию человека, был сделан шаг к пониманию природной среды как «естественного» капитала, от которого зависит удовлетворение человеком своих потребностей. Отсюда следовало, что «капитал» должен использоваться рационально, на основе эффективных технологий, при увязке потребностей человека и потенциальных возможностей природы. В соответствии с этими пределами развития проводился расчет истощения таких природных ресурсов, как нефть, металлы и т. п. В области охраны окружающей среды все чаще стали использовать превентивные, а не исправительные меры.
И все же пройденный почти за три десятилетия после Стокгольмской конференции путь показал, что основные тенденции быстрого ухудшения глобальных и региональных экологических условий не изменились, хотя за эти годы в природоохранные мероприятия были вложены сотни миллиардов долларов. Несмотря на заметные успехи развитых стран в области охраны природной среды и совершенствовании энерго- и ресурсосберегающих и природоохранных технологий, в глобальных масштабах продолжается деградация всех природных систем жизнеобеспечения.
Ныне становится ясно, что природа — это не капитал человечества, а его естественное окружение, где человек лишь один из множества элементов. Вся же природная система поддерживает стабильные условия окружающей среды, благоприятные для жизни в целом и жизни человека в частности. Следовательно, пределы развития человечества определяются степенью экологических нарушений, а не простым потреблением ресурсов. Стало очевидным, что вмешательство человека в естественные природные процессы зашло уже так далеко, что связанные с этим изменения окружающей среды могут оказаться необратимыми, а разрушительные последствия не могут быть преодолены лишь природоохранными мероприятиями.
Многочисленные программы охраны окружающей среды, принимавшиеся после Стокгольмской конференции на глобальном, региональном и местном уровнях, оказались недостаточными и неэффективными. Однако это не означает, что они были плохими. Просто исходили они из неверных посылок и оценок реальной экологической ситуации. Очевидно, в природе действует более универсальный механизм, ведущий к разрушению биосферы и экосистем, поэтому принимаемые меры в условиях действия этого механизма всегда оказываются недостаточными. Этот механизм теперь становится все понятнее: рост населения и его потребностей, удовлетворить которые возможно только на базе расширяющегося потребления с использованием опережающего развития энергетики и разрушения биоты.
За последние 20–30 лет отрицательные тенденции изменений окружающей среды и условий жизни человека не только не уменьшились, но, скорее, увеличились, и в перспективе можно ожидать их усиления, или, в лучшем случае, сохранения.
Изменяется газовый состав атмосферы (усиливается воздействие парниковых газов на климат), на тысячи километров от источников загрязнений переносятся кислотные осадки. Несмотря на провозглашенную ООН задачу обеспечить всех жителей Земли чистой питьевой водой, около трети человечества, включая значительную часть населения Азии (и, увы, России), не имеет к ней доступа.
Все это требует понимания механизма планетарных изменений и выделения тех главных его составляющих, которые управляют глобальными законами, определяющими состояние окружающей среды и его изменения со временем. Именно на это направлена Международная геосферно-биосферная программа, исследования по которой ведутся уже более десяти лет. Вместе с тем следует подчеркнуть, что сложные процессы в природе не могут быть просто сведены к небольшому числу фундаментальных законов, они должны учитывать локальные модификации, а региональные особенности, в свою очередь, оказывают решающее влияние на перераспределение потоков тепла в рамках общего баланса, обусловленного меняющимся положением Земли относительно Солнца.
Важную роль в природных процессах играет углеродный цикл, в частности, эмиссия парниковых газов в атмосферу, обусловленная разностью между первичной их продукцией и поглощением. Степень влияния на климат углеродного цикла определяется тенденциями, охватывающими, как минимум, несколько десятилетий, причем баланс углерода в экосистемах далек от нуля даже за длительный промежуток времени. Например, болота, в которых накапливается торф, имеют значительный положительный баланс углерода.В настоящее время углеродный цикл наземных экосистем находится в приблизительном глобальном равновесии по отношению к поглощению и эмиссии углекислоты. Однако в XXI в. наземная атмосфера может заметно обогатиться углекислым газом. Этому способствует быстрый рост человечества, что приводит к стремительному расширению посевных площадей (как правило, за счет сведения лесов) в Азии и Африке и, как следствие, к избыточному выделению углекислоты. Существуют серьезные опасения, что сокращение площади лесов в этих регионах может превысить возможное увеличение их площади в Европе и Северной Америке. Кроме того, за последние 30 лет в северных широтах значительно потеплело, а поэтому здесь гораздо чаще случаются засухи и пожары, что ведет к увеличению выбросов углекислоты в атмосферу.
Биоразнообразие и функционирование экосистем, т. е. накопление биомассы или органического углерода, не связаны между собой прямо пропорциональной зависимостью. Эта связь гораздо сложнее. Разнообразная экосистема не всегда продуктивнее. Однако с увеличением антропогенного давления биоразнообразие имеет тенденцию к уменьшению, а это, в свою очередь, ухудшает функционирование экосистем.
Впрочем, каковы бы ни были антропогенные изменения климата, они накладываются на его естественные вариации, масштаб которых все еще сильно превосходит влияния, обусловленные изменением облика поверхности Земли и эмиссией парниковых газов. Детальные исследования керна из глубоких скважин, пробуренных на ледниковых покровах Антарктиды (прежде всего на российской станции Восток) и Гренландии, позволяют сделать важные заключения.
Во-первых, понимание и предсказание последствий роста концентрации парниковых газов в атмосфере (так называемое глобальное потепление вследствие парникового эффекта) требует понимания естественной изменчивости природных процессов, на которые накладывается антропогенное влияние.
Во-вторых, концентрация парниковых газов и глобальная температура в прошлом изменялись параллельно, как это следует из анализа ледяных кернов, но содержание газов резко возросло за последние 100 лет, тогда как изменения температуры не выходят за рамки ее естественных флуктуаций.
В-третьих, ряд данных свидетельствует о том, что климат в прошлом менялся гораздо сильнее, чем в период регулярных инструментальных наблюдений, т. е. за последние 150 лет. В климатах прошлого отмечены значительные колебания уровня озер, режима рек, экстремальные засухи и наводнения. Если события такого масштаба повторятся в будущем, они могут иметь настолько серьезные
социально-экономические последствия, что к ним могут и не адаптироваться социальные и экономические системы.
Если десять и более лет назад главным фактором изменения климата считали увеличение выбросов парниковых газов, что повлекло за собой политические решения о квотах на выбросы, то сейчас позиция большинства ученых претерпела серьезные изменения. Главный вывод заключается в том, что неожиданные изменения климата в прошлом, очевидно, связаны с нелинейными процессами, в частности теми, которые влияют на формирование глубоких вод в Атлантике. Неустойчивость теплого климата может значительно расширить свои границы. В кернах сохранились следы быстрого потепления: подъем температуры на 5°С мог происходить за немногие десятилетия.
Если глобальный тепловой баланс Земли серьезно зависит от парникового эффекта, накладывающегося на космические закономерности поступления энергии от Солнца с присущими им изменениями (а именно таков главный вывод анализа керна из скважины на станции Восток), то региональные особенности климата определяются прежде всего колебаниями циркуляции вод океана в масштабах десятилетий. В оценке глобальных изменений циркуляции и их связи с климатом интерес сейчас в значительной мере смещается от циркуляции в атмосфере к циркуляции в океане. Океан играет важную роль в меридиональном переносе тепла к полюсам, меняя глобальный климат. Неверным оказалось предположение, что изменения в океане происходят очень медленно. Например, по Атлантическому океану к западу от Англии прокатываются тепловые волны с периодом 10 лет и амплитудой 0,05°C.
Из анализа циркуляции воды в океане следует, что в нескольких критических зонах небольшие колебания плотности воды, обусловленные образованием или таянием льда, могут существенно влиять на движение воды и, соответственно, на перенос тепла и климат. В частности, выяснилось, что критической для климата европейской части России оказывается глобальная циркуляция вод океана.
Таким образом, исследования последних лет показывают, что климатическая система — одна из сложнейших на Земле, требующая взаимосвязанного изучения глобальных изменений в океане, атмосфере, криосфере, почве, лесах и других системах. Невозможно вычленить из нее выбросы парниковых газов и сконцентрироваться только на квотах, как нельзя допускать чрезмерной политизации этой далекой еще от решения научной проблемы.
В основу развития человечества должна быть положена стратегия адаптации к природе и, в частности, к меняющемуся климату. В числе ключевых проблем должны быть: использование земель и изменение растительного и почвенного покрова, доступность воды, здоровье человечества, «устойчивое развитие» природы и общества.

<== предыдущая лекция | следующая лекция ==>
Производные азота | Кислотные осадки
Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 1299; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.023 сек.