Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Примеры разложения функций в ряды Фурье




Пример 1. Периодическая функция ƒ(x) с периодом 2π определяется следующим образом: ƒ(x) = х, -π < x ≤ π.

Эта функция – кусочно монотонная и ограниченная. Следовательно, её можно разложить в ряд Фурье.

 

По формуле (4) находим:

 

Применяя формулам (17), (18) и интегрируя по частям, получим:

 

.

Таким образом, получаем ряд:

.

Это равенство имеет место во всех точках, кроме точек разрыва. В каждой точке разрыва сумма ряда равна среднему арифметическому ее пределов справа и слева, т. е. нулю.

Пример 2. Периодическая функция ƒ(x) с периодом 2π определена следующим образом:

ƒ(x) = -1 при –π < x < 0,

ƒ(x) = 1 при 0 ≤ x ≤ π.

Эта функция кусочно монотонна и ограничена на отрезке [-π, π]. Вычислим ее коэффициенты Фурье:

,

 

 

 

Следовательно, для рассматриваемой функции ряд Фурье имеет вид:

.

Это равенство справедливо во всех точках, кроме точек разрыва.

11.5. Замечание о разложении периодической функции в ряд Фурье.

Отметим следующее свойство периодической функции ψ(x) с периодом 2π:

, каково бы ни было число λ.

Действительно, так как ψ(ξ - 2π) = ψ (ξ), то, полагая x = ξ - π, можем написать при любых c и d:

.

В частности, принимая с = - π, d = λ, получим:

 

поэтому

 

Указанное свойство означает, что интеграл от периодической функции ψ(x) по любому отрезку, длина которого равна периоду, имеет всегда одно и тоже значение.

Из доказанного свойства вытекает, что при вычислении коэффициентов Фурье мы можем заменить промежуток интегрирования (-π, π) промежутком интегрирования (λ, λ +2π), т. е. можем положить

 

(20)

где λ – любое число.

Это следует из того, что функция ƒ(x) является, по условию, периодической с периодом 2π; следовательно и функция ƒ(x)·cоsnx, и ƒ(x)·sinnx являются периодическими функциями с периодом 2π. В некоторых случаях доказанное свойство упрощает процесс нахождения коэффициентов.

Пример.

Пусть требуется разложить в ряд Фурье функцию ƒ(x) с периодом 2π, которая на отрезке 0 < x ≤ 2π задана равенством ƒ(x)= х.

Эта функция на отрезке [-π, π] задается двумя формулами:

ƒ(x) = х + 2π на отрезке [-π, 0]

ƒ(x) = х на отрезке [0, π].

В то же время на отрезке [0, 2π] гораздо проще она задается одной формулой ƒ(x) = х. Поэтому для разложения этой функции в ряд Фурье выгоднее воспользоваться формулами (20), приравняв λ=0.

 

Следовательно,

 

11.6. Ряды Фурье для чётных и нечётных функций.

 

Теорема: Для любой чётной функции её ряд Фурье состоит только из косинусов.

 

Для любой нечётной функции:

.

Из определения четной и нечетной функции следует, что если ψ(x) – четная функция, то

.

Действительно,

 

так как по определению четной функции ψ(- x) = ψ(x).

Аналогично можно доказать, что если ψ(x) – нечетная функция, то

 

Если в ряд Фурье разлагается нечетная функция ƒ(x), то произведение ƒ(x) ·coskx есть функция также нечетная, а ƒ(x) · sinkx – четная; следовательно,

(21)

т. е. ряд Фурье нечетной функции содержит «только синусы».

Если в ряд Фурье разлагается четная функция, то произведение ƒ(x)·sinkx есть функция нечетная, а ƒ(x) · coskx – четная, то:

(22)

т. е. ряд Фурье четной функции содержит «только косинусы».

Полученные формулы позволяют упрощать вычисления при разыскании коэффициентов Фурье в тех случаях, когда заданная функция является четной или нечетной. Очевидно, что не всякая периодическая функция является четной или нечетной.

 




Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 607; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.