КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Лекция 09
Микросхемы памяти. ОЗУ и ПЗУ Цифровые запоминающие устройства
Основные понятия и виды запоминающих устройств. Цифровые запоминающие устройства предназначены для записи, хранения и выдачи информации, представленной в виде цифрового кода. Основными характеристиками запоминающих устройств являются: их информационная емкость, быстродействие и время хранения информации. Классификацию цифровых запоминающих устройств можно выполнять по ряду признаков: • функциональному назначению; • способу хранения информации; • технологическому исполнению; • способу обращения к массиву элементов памяти. В основу технической классификации запоминающих устройств (ЗУ) положено их функциональное назначение. По функциональному назначению все виды ЗУ можно разделить на следующие группы: • оперативные запоминающие устройства (ОЗУ, или RAM) — устройства памяти цифровой информации, объединенные со схемами управления, обеспечивающими режимы записи, хранения и считывания цифровой (двоичной) информации в процессе ее обработки; ' постоянные запоминающие устройства (ПЗУ, или ROM) — матрицы пассивных элементов памяти со схемами управления, предназначенные для воспроизведения неизменной информации, заносимой в матрицу при изготовлении (в режиме хранения информации энергия не потребляется); • программируемые постоянные запоминающие устройства (ППЗ У, или FROM) — постоянные запоминающие устройства с возможностью однократного электрического программирования; они отличаются от ПЗУ тем, что позволяют в процессе применения микросхемы однократно изменить состояние запоминающей матрицы электрическим путем по заданной программе; • репрограммируемые постоянные запоминающие устройства (РПЗУ, или EEPROM) — постоянные запоминающие устройства с возможностью многократного электрического перепрограммирования; они отличаются от ППЗУ тем, что допускают многократную электрическую запись информации, но число циклов записи и стирания ограничено (до 103 циклов); репрограммируемые постоянные запоминающие устройства с ультрафиолетовым стиранием и электрической записью информации (РПЗУ УФ, или EPROM), они отличаются от РПЗУ только способом стирания информации с помощью ультрафиолетового освещения, для чего в корпусе микросхемы имеется специальное окно; ассоциативные запоминающие устройства (АЗУ, или САМ) — «безадресные» ЗУ, в которых поиск и выборка информации осуществляется по содержанию произвольного количества разрядов хранящихся в АЗУ чисел, независимо от физических координат ячеек памяти. Перечисленный ряд запоминающих устройств не является исчерпывающим. Эта область электроники в настоящее время бурно развивается и появляются новые разновидности ЗУ с иными принципами функционирования. Например, имеются программируемые логические матрицы (ПЛМ), отличающиеся от ППЗУ ограниченным набором входных сигналов. Также имеются РПЗУ, в которых допускается избирательное стирание информации в любом отдельном элементе памяти (EAROM). По способу хранения информации ЗУ делятся на статические и динамические. Элементы памяти статических ЗУ представляют собой бистабильные ячейки, что определяет потенциальный характер управляющих сигналов и возможность чтения информации без ее разрушения. В динамических ЗУ для хранения информации используются инерционные свойства реактивных элементов (например, конденсаторов), что требует периодического восстановления (регенерации) состояния элементов памяти в процессе хранения информации. В большинстве динамических ЗУ регенерация совмещается с обращением к элементам памяти. Для обеспечения синхронизации работы динамических ЗУ используются потенциально-импульсные сигналы управления. Некоторые типы динамических ЗУ имеют встроенную систему регенерации и синхронизации. По внешним сигналам управления они не отличаются от полностью статических ЗУ и поэтому их часто называют квазистатическими ЗУ. Статические ЗУ бывают синхронными и асинхронными. Синхронные статические ЗУ имеют статический накопитель (матрицу элементов памяти) и динамические цепи управления, требующие синхронизации, аналогично динамическим ЗУ. По технологии выполнения ЗУ можно разделить на следующие виды: • полупроводниковые ЗУ на основе биполярных структур, использующие схемотехнику ТТЛ, ЭСЛ и др.; • полупроводниковые ЗУ на основе полевых транзисторов с изолированным затвором: p-моп, n-МОП и КМОП; • полупроводниковые ЗУ на основе приборов с зарядовой связью; • магнитные ЗУ на основе цилиндрических магнитных доменов. Следует отметить, что независимо от технологии изготовления ЗУ уровни их входных и выходных сигналов обычно приводятся к уровням стандартных серий элементов ТТЛ, ЭСЛ или КМОП. Для использования в РПЗУ разработаны специальные структуры: • с лавинной инжекцией заряда и плавающим затвором (ЛИПЗ МОП), которые применяются в РПЗУ Уф; • со структурой металл — нитрид кремния — окисел кремния — полупроводник (МНОП), которые используются в РПЗУ с электрическим стиранием, в том числе и с избирательным стиранием. По способу обращения к массиву памяти все ЗУ делятся на адресные и безадресные (ассоциативные). Большинство видов ЗУ относятся к адресным ЗУ, в которых обращение к элементам памяти производится по их физическим координатам, задаваемым внешним двоичным кодом-адресом. Адресные ЗУ бывают следующих типов: • с произвольным обращением, которые допускают любой порядок следования адресов; • с последовательным обращением, в которых выборка элементов памяти возможна только в порядке возрастания или убывания адресов (обычно такие ЗУ выполняются на регистрах сдвига). Ассоциативные ЗУ не имеют входов адресных сигналов: поиск и выборка информации в таких ЗУ осуществляется по ее содержанию и не зависит от физических координат элементов памяти. Основные электрические параметры ЗУ. Все параметры ЗУ можно разделить на статические и динамические. Статические параметры ЗУ характеризуют его работу в установившемся режиме. Система статических параметров ЗУ представляет собой совокупность некоторых контрольных точек его вольт-амперных характеристик. Динамические параметры ЗУ определяются происходящими в нем временными процессами. Систему динамических параметров ЗУ составляет совокупность временных переходов входных и выходных сигналов, соответствующих границам правильного функционирования ЗУ. Кроме этого используются также специальные классификационные параметры ЗУ, по которым выполняют их разделение по группам в соответствующих сериях ИМС ЗУ. В качестве классификационных параметров могут использоваться также некоторые статические и динамические параметры. В табл. 17.1 приведены основные классификационные параметры ЗУ. Статические параметры ЗУ можно разделить на общие, входные и выходные. В табл. 17.2 приведены некоторые статические параметры ЗУ. К динамическим параметрам относятся основные временные характеристики ЗУ, такие как время выбора микросхемы tcs, время выбора адреса 1д, время выборки сигнала 1щ) и некоторые другие. Динамические ОЗУ. Для увеличения информационной емкости широко используются динамические ОЗУ, в которых информация хранится в виде заряда соответствующих емкостей. При токе утечки обратно смещенного p-n-перехода около 10-10 А и емкости хранения 0,1пФ время хранения не превышает 1мс. В связи с этим необходимо восстановление (регенерация)хранимой информации с периодом не более 1 мс. Емкостные ячейки памяти выполняются или на биполярных, или на МОП транзисторах. Для динамических ОЗУ характерны некоторые особенности, которые существенно отличают их от статических: динамические ЗЯ не требуют источника питания; для выполнения регенерации заряда необходимы соответствующие блоки; малая потребляемая мощность; для управления динамическим ОЗУ необходимы последовательности импульсов, которые обычно формируются специальными генераторами. По способу регенерации микросхемы динамических ОЗУ делятся на адресные и безадресные. При адресной регенерации производится перебор регенерируемых ячеек с тем, чтобы за период регенерации восстановить заряды во всех ячейках. При безадресной регенерации заряды восстанавливаются во всех ячейках при помощи специальных тактовых импульсов. Отличительной особенностью микросхем динамических ОЗУ является их адресация. Схемы динамических ОЗУ отличаются от схем статических ОЗУ использованием последовательной адресации. Вначале на адресный вход подается строб адреса строки RAS, а затем строб адреса столбца CAS. Для этих стробов имеются специальные выводы микросхемы, которые показаны на структурной схеме рис. 17.1. Адресные сигналы поступают в регистры-фиксаторы, а затем на дешифраторы адресов. Устройство типовой ячейки памяти динамического ОЗУ приведено на рис. 17.5. Хранение информации происходит в емкости CGS (затвор — исток) полевого транзистора, а транзистор VT1 выполняет роль ключа выборки. Сохранность информации при выборке и хранении обеспечивается при помощи усилителя-регенератора. Режим хранения обеспечивается периодической регенерацией заряда емкости CGS с частотой около сотни герц. В процессе регенерации уменьшение заряда на емкости CGS компенсируется усилителем регенератором. Динамические ОЗУ имеют малую потребляемую мощность (50... 500 мВт) при увеличении информационной емкости по сравнению со статическим ОЗУ почти на порядок. Это объясняется тем, что для хранения информации почти не потребляется энергия, и все структуры работают в импульсном (ключевом) режиме.
Дата добавления: 2014-01-04; Просмотров: 396; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |