КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Влияние эластичности на течение полимеров
Эластичность расплавов и растворов полимеров оказывает влияние на течение и определяет отличия реологического поведения полимеров от гидродинамики простых жидкостей. Можно отметить как основные следующие формы проявления эластичности при течении полимеров. 1. Аномалия вязкости, как уже было показано, является наиболее прямым следствием эластических деформаций. Нарушение способности к сегментальному движению в результате перехода макромолекулярного клубка в упругодеформированное состояние приводит к снижению затрат на внутреннее трение сегментов и к снижению вязкости. Поскольку процесс этот захватывает с ростом скорости сдвига все большее число молекул, вязкость постепенно падает, что характерно для полимеров с широким молекулярно-массовым распределением. 2. Эластичность в полимере в отличие от низкомолекулярных жидкостей приводит к постепенному нарастанию напряжений. На рис. 11.9 показано, как нарастают напряжения сдвига в системе, когда в ротационном вискозиметре мгновенно задается определенная скорость вращения цилиндра.
В низкомолекулярной жидкости, когда эластические деформации отсутствуют, сразу после включения мотора устанавливается предельное напряжение сдвига (показано пунктиром). В расплаве (или растворе) полимера напряжения возникают постепенно в соответствии с постепенным развитием эластических деформаций клубков макромолекул в направлении сдвига. При большой скорости сдвига флуктуационная сетка не может быстро разрушиться и в системе возникают напряжения, большие, чем те, которые могут быть обусловлены собственно сопротивлением вязкому течению. После разрушения флуктуационной сетки (скорость сдвига , ) касательные напряжения снижаются и достигается режим установившегося течения. Именно предельное значение напряжения в установившемся режиме течения берут для расчета вязкости путем деления на скорость сдвига в соответствии с законом Ньютона (11.1). Характерно, что пиковые нагрузки, подобные показанным на рис. 11.9, могут в несколько раз превышать нагрузки в установившемся режиме переработки. Это обстоятельство приводит к необходимости устанавливать на экструдерах, вальцах и каландрах значительно более мощные моторы, чем это требуется для поддержания установившегося процесса течения в перерабатываемом материале. 3. Искажение формы струи, выходящей из капилляра вискозиметра или из головки экструдера, как уже было показано, является следствием развития больших (до 500%) высокоэластических деформаций, что в конечном итоге приводит к скольжению полимера по стенкам капилляра и срыву струи. 4. Эластические деформации, накапливающиеся при течении, релаксируют при выходе из капилляра. Это приводит к сокращению струи. Если струя длинная (как, например, при непрерывном продавливании полимера через экструдер), то сокращение ее длины незаметно; однако оно проявляется в «разбухании» струи, увеличении ее поперечного сечения по сравнению с сечением капилляра, как это показано на рис. 11.4. Чем выше эластичность расплава, тем больше увеличивается диаметр струи. Это явление приводит к необходимости сложных (и неточных) расчетов диаметра отверстия, которое обеспечит получение профиля экструдата необходимого диаметра и формы. Эластичность полимера снижают либо повышением температуры переработки, либо снижением молекулярной массы, либо рецептурными факторами, например введением неэластичного (порошок мела) наполнителя, который снижает эластичность системы в целом. Температуру текучести можно также существенно понизить введением пластификатора. Пластифицированный полимер – это по существу концентрированный раствор полимера в пластификаторе. Пластификатор облегчает относительное перемещение макромолекул, что приводит к снижению вязкости и, следовательно, к снижению температуры текучести. Итак, полимеры в вязкотекучем состоянии являются высоковязкими жидкостями, в которых наряду с течением развиваются значительные эластические деформации. Если полимер имеет узкое молекулярно-массовое распределение, то, несмотря на проявление эластичности, он течет как ньютоновская жидкость. При широком молекулярно-массовом распределении в полимере развивается значительная аномалия вязкости – зависимость вязкости от напряжения и скорости сдвига. При больших напряжениях сдвига развиваются столь значительные эластические деформации, что полимер оказывается упругонапряженным и перестает течь. Если же полимер находится в растворе, то распад узлов флуктуационной сетки и ориентации сегментов достигают некоторого предела, зависящего от природы полимера и концентрации раствора, когда далее с ростом напряжения сдвига надмолекулярная структура больше не меняется и раствор снова течет как ньютоновская жидкость.
Дата добавления: 2014-01-04; Просмотров: 730; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |