Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Построение кривых




Построение с использованием преобразований

Построение нового объекта с использованием преобразований заключается в следующем:

· задается преобразуемый объект,

· задается преобразование (это может быть обычное аффинное преобразование, определяемое матрицей, или некоторое деформирующее преобразование, например, замена одного отрезка контура ломаной),

· выполнение преобразования; в случае аффинного преобразования для векторов всех характерных точек преобразуемого объекта выполняется умножение на матрицу; для углов вначале переходят к точкам и затем выполняют преобразование.

Важное значение при формировании как 2D, так и 3D моделей имеет построение элементарных кривых. Кривые строятся, в основном, следующими способами:

· той или иной интерполяцией по точкам,

· вычислением конических сечений,

· расчетом пересечения поверхностей,

· выполнением преобразования некоторой кривой,

· формированием замкнутых или разомкнутых контуров из отдельных сегментов, например, отрезков прямых, дуг конических сечений или произвольных кривых.

В качестве последних обычно используются параметрические кубические кривые, так как это наименьшая степень при которой обеспечиваются:

· непрерывность значения первой (второй) производной в точках сшивки сегментов кривых,

· возможность задания неплоских кривых.

Параметрическое представление кривых выбирается по целому ряду причин, в том числе потому, что зачастую объекты могут иметь вертикальные касательные. При этом аппроксимация кривой y = f(x) аналитическими функциями была бы невозможной. Кроме того кривые, которые надо представлять, могут быть неплоскими и незамкнутыми. Наконец, параметрическое представление обеспечивает независимость представления от выбора системы координат и соответствует процессу их отображения на устройствах: позиция естественным образом определяется как две функции времени x(t) и y(t).

В общем виде параметрические кубические кривые можно представить в форме:

 
x(t) =
A11 t3
+
A12 t2
+
A13 t
+
A14
y(t) =
A21 t3
+
A22 t2
+
A23 t
+
A24
z(t) =
A31 t3
+
A32 t2
+
A33 t
+
A34
 
(0.2.2)

где параметр t можно считать изменяющимся в диапазоне от 0 до 1, так как интересуют конечные отрезки.

Существует много методов описания параметрических кубических кривых. К наиболее применяемым относятся:

· метод Безье, широко используемый в интерактивных приложениях; в нем задаются положения конечных точек кривой, а значения первой производной задаются неявно с помощью двух других точек, обычно не лежащих на кривой;

· метод В-сплайнов, при котором конечные точки не лежат на кривой и на концах сегментов обеспечивается непрерывность первой и второй производных.

В форме Безье кривая в общем случае задается в виде полинома Бернштейна:

P(t) = яåi = 0n Cmi ti (1-t)m-1 Pi

где Pi - значения координат в вершинах ломаной, используемой в качестве управляющей ломаной для кривой, t - параметр,

Cmi = m! i! (m-i)!  

При этом крайние точки управляющей ломаной и кривой совпадают, а наклоны первого и последнего звеньев ломаной совпадают с наклоном кривой в соответствующих точках.

Предложены различные быстрые схемы для вычисления кривой Безье.

В более общей форме B-сплайнов кривая в общем случае задается соотношением:

P(t) = åi = 0n Pi Nim(t)

где Pi - значения координат в вершинах ломаной, используемой в качестве управляющей ломаной для кривой, t - параметр, Nim - весовые функции, определяемые рекуррентным соотношением:

Ni,1 = ü ý þ  
1,
если xi £ t £ xi+1
0,
в других случаях
 

 

Ni,k(t) = (t - xi) Ni,k-1(t) xi+k-1 - xi + (xi+k - t) Ni+1,k-1(t) xi+k - xi+1 .

Используются и многие другие методы, например, метод Эрмита, при котором задаются положения конечных точек кривой и значения первой производной в них.

Общее в упомянутых подходах состоит в том, что искомая кривая строится с использованием набора управляющих точек.




Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 342; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.013 сек.