Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Вывод закона трения Стокса в произвольной системех координат

Используем в уравнении (97) закон трения Стокса в главной системе координат – заменим нормальные напряжения их зависимостями от деформаций по уравнениям (36-38):

(103)

Уравнение (103) легко упрощается, если принять во внимание, что сумма квадратов косинусов (52-57) равна 1.

 

Кроме того, используем уравнение (74) и (93) и повторим всё для (96) и (98):

 

(104)

(105)

(106)

Уравнения для касательных напряжений в произвольной системе координат получим, использовав уравнения (100-102) и (36-38):

(107)

Уравнение (107) легко упрощается, если принять во внимание, что сумма попарных произведений косинусов (46-51) равна нулю. Следует принять во внимание также уравнения (90), (91) и (92).

(108)

или, учитывая также уравнения (77-79) и (90-92) и повторив всё для (101) и (102):

(109)

(110)

(111)

Уравнения (104,105,106, 109,110,110) и есть закон трения Стокса в произвольной системе координат.

 

Конец лекции № 14

<== предыдущая лекция | следующая лекция ==>
Соотношение напряжений в главной и произвольной системах координат | Проверка поступления животных
Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 390; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.