КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Передаточная функция неизменяемой части известна
Для устойчивости дискретной системы необходимо и достаточно, чтобы все корни ее характеристического уравнения были по модулю строго меньше единицы или, что тоже самое, лежали внутри круга единичного радиуса. Исследовать устойчивость дискретной системы путем определения корней характеристического уравнения неудобно и непродуктивно с точки зрения определения путей стабилизации системы. Желательно, как и ранее, иметь критерии устойчивости, позволяющие оценивать устойчивость без нахождения полюсов системы, определять запасы устойчивости, вычислять критические значения параметров и т.д. Критерии устойчивости, разработанные для дискретных систем, сложны и неудобны в использовании. Поэтому практическое применение нашли методы, полученные для непрерывных систем, которые можно использовать после преобразования передаточной функции дискретной системы, которое осуществляется подстановкой (8.12) Выражение (8.12) определяет так называемое билинейное преобразование, которое отображает внутренность единичного круга на плоскости z в левую полуплоскость плоскости w. Для преобразованного характеристического уравнения условием устойчивости является нахождение всех его корней в левой полуплоскости. Поэтому после билинейного преобразования для оценки устойчивости дискретной системы можно использовать все критерии, разработанные для непрерывных систем.
Для оценки устойчивости дискретно системы можно использовать и частотные характеристики, получающиеся после замены Однако, полученные таким путем характеристики выражаются сложными трансцендентными функциями и их определение и использование связано со сложными вычислениями. Поэтому, для использования частотных характеристик, вначале к передаточной функции применяют билинейное преобразование (8.12). Из (8.12) также следует Сравнивая полученный результат с заменой s = jw, можно сделать вывод, что по форме они совершенно одинаковы. Назовем псевдочастотой величину и, для получения характеристик дискретной системы относительно псевдочастоты, будем использовать подстановку Псевдочастота и круговая частота связаны соотношением (8.13) Из полученных выражений видно, что частотные характеристики дискретных САУ относительно круговой частоты являются периодическими функциями с периодом Нетрудно убедиться, что при изменении круговой частоты в указанных пределах, псевдочастота изменяется от -¥ до +¥. Так как частотные характеристики периодические функции, то достаточно строить их в пределах Частотные характеристики дискретных систем строятся относительно псевдочастоты и после этого, для оценки устойчивости, к ним применимы частотные критерии устойчивости. Построение частотных характеристик дискретных систем связано с большим объемом преобразований и вычислений. В то же время использование частотных характеристик предпочтительно в случаях, когда нужно не только оценить собственно устойчивость системы, но и определить запасы устойчивости и наметить пути стабилизации системы. Для расчета и построения частотных характеристик дискретных систем используются различные прикладные программы вычислений.
8.5. Анализ качества дискретных САУ Показатели качества дискретной системы наиболее просто определяются по кривой переходного процесса, вызванного единичным ступенчатым воздействием Изображение переходной функции будет Дискретные значения переходного процесса могут найдены путем разложения изображения H(z) в ряд Лорана, которое реализуется простым делением числителя изображения переходной функции на ее знаменатель. После деления получим (8.14) С другой стороны, по определению Z – преобразования (8.15) Сравнивая (8.15) с (8.14), можно заключить, что коэффициенты разложения Сi равны дискретным значениям h(iT) переходной функции.
8.6. Синтез дискретных САУ Синтез дискретных САУ состоит в разработке такой программы обработки информации в ЦВМ, при которой синтезированная система удовлетворяет поставленным требованиям. При синтезе дискретных систем необходимо учитывать некоторые особые условия, важнейшим из которых является условие грубости.
8.6.1. Условие грубости системы. При синтезе замкнутой дискретной САУ ее передаточная функция не может быть выбрана произвольно, она должна удовлетворять определенным требованиям. Прежде всего желаемая передаточная функция замкнутой системы Фж(z) должна удовлетворять условию физической реализуемости, которое выполняется, если Фж(z) представляет собой правильную дробь по z (n>m). Предположим, что параметры дополнительной корректирующей цепи несколько отличаются от расчетных. Тогда передаточная функция замкнутой системы Ф( z) будет несколько отличаться от желаемой Фж(z). Оценим отклонеие (вариацию) Ф(z) от Фж(z): (8.20) (8.21) (8.22) (8.23) (8.24) (8.25) (8.26) (8.27) Если передаточная функция неизменяемой части не имеет нулей и полюсов по модулю больших единицы (устойчивая и минимально-фазовая неизменяемая часть), то и вариация dФ(z) не будет содержать неустойчивых полюсов, и передаточная функция (8.28) Если же передаточная функция неизменяемой части системы имеет нули или полюсы, по модулю большие единицы, что соответствует неминимально-фазовой или неустойчивой неизменяемой части, то эти нули и полюсы будут совпадать с полюсами вариации (8.27) замкнутой системы, как бы ни были малы вариации dQ(z) и dP(z). Следовательно, передаточная функция замкнутой системы, определяемая выражением (8.28) будет соответствовать неустойчивой системе. В этом случае система является негрубой, ибо при небольшом отличии параметров корректирующей цепи от заданных замкнутая САУ становится неустойчивой. Отсюда следует, что корректирующая цепь не должна содержать нулей и полюсов, которые близки к неустойчивым нулям и полюсам передаточной функции неизменяемой части системы. Иначе говоря, для обеспечения грубости замкнутой САУ нельзя сокращать неустойчивые нули и полюсы передаточной функции неизменяемой части разомкнутой системы с полюсами и нулями передаточной функции корректирующей цепи. Этот вывод накладывает определенные ограничения на желаемую пере даточную функцию замкнутой системы. Представим числитель и знаменатель передаточной функции неизме няемой части системы в виде
(8.29) (8.30) Действуя аналогично можно определить условия грубости для систем с последовательной коррекцией в цепи обратной связи и для параллельной коррекции. В результате можно получить следующие выводы. 1. Для минимально-фазовой и устойчивой неизменяемой части разомкнутой САУ условия грубости заведомо выполняются, и поэтому выбор желаемой передаточной функции замкнутой системы не стеснен ограничениями. 2. Для неминимально-фазовой и устойчивой неизменяемой части разомкнутой САУ условия грубости одинаковы при любом виде коррекции и накладывают определенные ограничения на выбор Фж(z) - она должна содержать неустойчивые нули передаточной функции W0(z). 3. Для минимально-фазовой и неустойчивой неизменяемой части разомкнутой системы возникают дополнительные ограничения на выбор Фж(z), вытекающие из условия грубости, для последовательной коррекции в прямой цепи и параллельной коррекции (см. 8.30). 4. Для неминимально-фазовой и неустойчивой неизменяемой части разомкнутой САУ ограничения на выбор желаемой передаточной функции замкнутой системы возникают при всех видах коррекции. Выше мы рассматривали замкнутую систему при одном внешнем воздействии, приложенном ко входу импульсного элемента. Изменение точки приложения входного воздействия изменяет вид передаточной функции замкнутой системы. Поэтому, в силу неизбежных флюктуаций в различных точках замкнутой САУ, следует выбирать Фж( z), исходя из наиболее жестких условий грубости, выведенных из анализа формулы 8.30. Таким образом, для всех видов коррекции Фж(z) должна содержать нули P-(z), а Фe(z)=1-Фж(z) - нули Q-(z). 8.6.2. Методы синтеза дискретных САУ Синтез дискретной системы может быть произведен с помощью ЛЧХ, по методике изложенной для непрерывных систем. Полученная передаточная функция корректирующего устройства Wk(w) с помощью выражения для билинейного преобразования переводится в Wk(z), что и определяет фрагмент программы ЦВМ. Дискретная система может быть синтезирована по аналоговому прототипу, т.е. по выполнению условия . Выбрав требуемую коррекцию, например использованием ЛЧХ, можно определить желаемую передаточную функцию замкнутой непрерывной системы, а следовательно и ее импульсную переходную характеристику k(t). По ней можно определить желаемую передаточную функцию дискретной системы (8.31) Далее определяется передаточная функция разомкнутой системы (8.32) С другой стороны, передаточная функция разомкнутой системы (8.33) Выражения (8.32) и (8.33) позволяют определить передаточную функцию ЦВМ, т.ее программу ее работы. Рассмотрим методику синтеза дискретной САУ по критерию быстродействия, когда основным является требование, чтобы выходной сигнал имел конечную и минимальную длительность. Примем следующие обозначения: передаточная функция неизменяемой части; передаточная функция ЭВМ. (8.34) (8.35) (8.36) Условие грубости системы требует, чтобы передаточная функция желаемой замкнутой системы содержала в качестве своих нулей нули полинома В-(z), а передаточная функция 1-Ф(z) в качестве своих нулей содержала нули полинома С-(z). (8.37) При необходимости получить конечную длительность процесса регулирования выбирают характеристический полином замкнутой системы в виде: (8.38) В силу выражений (8.36) и (8.37) можно получить
(8.39) (8.40) (8.41) (8.42) При избранных порядках полиномов N(z) и M(z) полиномиальное уравнение (8.39) решается развертыванием его в систему алгебраических уравнений относительно коэффициентов указанных полиномов путем приравнивания членов с одинаковыми степенями оператора z в левой и правой части исходного уравнения. Выбор определяет процесс минимальной и конечной длительности. В этом случае число уравнений полученной системы равно числу неизвестных коэффициентов и она имеет единственное решение. Чаще всего при таком выборе длительности процесса синтезированная система не обладает достаточными запасами устойчивости и имеет высокое перерегулирование. Для исключения этого явления есть два пути. Первый заключается в сохранении конечной длительности переходного процесса при увеличении времени регулирования путем выбора >. В этом случае система алгебраических уравнений содержит неизвестных больше, чем уравнений и имеет бесчисленное количество решений. Разность между числом уравнений и числом неизвестных равна величине увеличения порядка системы по сравнению с минимальным. Каких-либо общих рекомендаций по выбору “лишних” неизвестных коэффициентов дать невозможно. Одной из возможностей решения этой проблемы является наложение ограничений на коэффициенты числителя передаточной функции замкнутой системы. Для этого необходимо получить изображение переходной функции и выбрать ее значения исходя из требований к переходному процессу. Эти значения являются функциями коэффициентов полиномов B-(z) и M(z). Таким способом иногда удается подобрать приемлемые значения “лишних” коэффициентов и затем решить систему уравнений относительно оставшихся коэффициентов полиномов M(z) и N(z). Решение задачи и в этом случае неоднозначно и при невозможности получить желаемый переходный процесс приходиться еще более увеличивать порядок системы. (8.43) 8.7. Операционные методы цифрового моделирования дискретно – непрерывных систем. Для исследования дискретно – непрерывных САУ широко рапространено моделирование их динамики на ЦВМ. Математическая модель для ее программирования на ЦВМ в любом случае сводится к описанию системы в форме разностных уравнений. Разностное уравнение (уравнение в конечных разностях) является аналогом дифференциальных уравнений в дискретной области. Формально переход от дифференциального уравнения к разностному осуществляется путем замены в первом производных конечными разностями в соответсивии с выражением (8.44) где - конечная разность к – го порядка. Пусть дифференциальное уравнение системы имеет вид Подставив иместо производных выражения вида (8.44) и учитывая формулу конечных разностей, после преобразований получим (8.45) Это и есть уравнение системы в конечных разностях. В этом уравнении Разностное уравнение дает возможность получить рекуррентную формулу для вычисления для вычисления i – го значения выходной величины по ее прошлым значениям и значениям входной величины (8.46) Рекуррентное выражение легко программируется для вычислений на ЦВМ. Недостатком такой математической модели является то, что начальное значение выходной величины не равно нулю: При малых значениях периода дискретизации эта ошибка невелика и ею можно пренебречь. С увеличением числа тактов вычислений ошибка дискретной модели непрерывной системы быстро уменьшается. Начальную ошибку можно исключить ее вычитанием из правой части (8.46) при i=0. Применив Z – преобразование к (8.45) и учитывая теорему запаздывания, поучим передаточную Z – функцию непрерывной системы (8.47)
Отсюда следует, что, зная передаточную функцию дискретной системы в аппарате Z – изображений, легко получить моделирующее ее разностное уравнение. Важным обстоятельством является то, что при иммитационном моделировании операцию преобразования дифференциального уравнения в разностное можно применить отдельно к каждому элементу непрерывной части системы и попученные уравнения включить в общую систему разностных уравнений,моделирующую дискретно – непрерывную САУ. Очень часто дискретно – непрерывная система задана в виде структурной схемы и желательно получить разностные уравнения непрерывных динамических звеньев непосредственно по их передаточным функциям. Для этой цели распрстранение нашли методы подстановки, связанные с заменой s =f(z). При этом должны выполняться следующие требования: 1)если непрерывная передаточная функция W(s) соответствует устойчивой системе, то и полученная передаточная функция W(z) должна определять устойчивую систему; 2)способ должен допускать возможность раздельного применения к звеньям структурной схемы; 1) для постоянных сигналов коэффициент усиления дискретной цепи должен соответствовать тем же значениям коэффициента усиления непрерывной цепи. Перечисленным требованиям наиболее полно удовлетворяет подстановка Тастина (8.50) Подстановка Тастина дает хорошие результаты при где основная постоянная времени непрерывной системы. В некоторых изданиях рекомендуют выбирать Этим требованиям не всегда удается удовлетворить и в таких случаях можно использовать модифицированную подстановку Тастина (8.51) При неизменном значении периода дискретизации удовлетворительное соответствие динамики непрерывной системы с ее дискретной моделью иногда можно получить подбором параметра Тастина w. Полученная подстановкой Z – передаточная функция описанным выше способом преобразуется в рекуррентную формулу. Для получения дискретной модели непрерывной системы можно использовать метод подбора корня, который заключается в выполнении следующих операций: 1) определение нулей и полюсов передаточной функции непрерывной системы; 2) отображение нулей и полюсов s – плоскости в z – плоскости, исппользуя соотношения 1) образование полиномов Z – передаточной функции с полюсами и нулями, определенными в п.2; 2) определение конечного значения реакции непрерывной системы на единичное ступенчатое воздействие; 3) определение конечного значения реакции дискретной системы на единичное ступенчатое воздействие; 4) подбор конечного значения дискретной системы в соответствии с конечным значением непрерывной системы введением постоянной в передаточную функцию, образованную в п.3; 5) добавление нулей в передаточную функцию дискретной системы до получения m =n – 1. 6) Определение моделирующего разностного уравнения. Для использования рассмотренного способа непрерывная система должна удовлетворять следующим требованиям: 1) быть асимптотически устойчивой и удовлетворять теореме о конечном значении; 2) конечное значение не должно равняться нулю.
Дата добавления: 2014-01-04; Просмотров: 1428; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |