Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Метод конечных элементов в расчетах плоских стержневых систем

Рассмотрение упругих систем вообще и плоских стержневых систем в частности с позиций МКЭ есть представление упругих систем в виде набора элементов с конечным числом степеней свободы, которые соединяются между собой в узловых точках (узлах). Такое представление заданной системы в виде дискретной модели приводит к полной формализации всех этапов расчета. Подход к решению задачи является единым, как для стержневых систем, так и для пластин, оболочек, объемных тел и т.п.

Рассматривать будем МКЭ разработанный на базе метода перемещений, применительно к расчету плоских стержневых систем.

При расчете плоских стержневых систем в МКЭ приняты те же гипотезы, что и в обычном методе перемещений. Несколько уточняется только одна гипотеза: в МКЭ будем учитывать влияние не только изгибных, но и влияние продольных деформаций на перемещения узловых точек сооружения. Т.е. длина стержня в результате деформаций растяжения-сжатия может изменяться. Это положение позволяет в большей степени формализовать выбор основной системы МКЭ и получить результаты расчета более точные, чем в обычном методе перемещений.

Расчет стержневых систем, как и любых других, в МКЭ начинают с разбиения заданной системы на отдельные элементы.

В качестве конечных элементов (КЭ) мы будем рассматривать прямолинейные стержни, имеющие постоянную жесткость по длине. Между собой КЭ могут соединяться жестко или с помощью шарнира. Точки соединения элементов в МКЭ называют узловыми или узлами.

Т.е. основную систему (дискретную модель) МКЭ получают, разбивая заданную систему на отдельные прямолинейные элементы, имеющие постоянную жесткость по длине. При наличии в системе криволинейных стержней или стержней с переменной жесткостью, их, с достаточной степенью точности, разбивают на участки, в пределах которых стержни считают прямолинейными, с усредненной постоянной жесткостью.

Кроме того, алгоритм МКЭ требует, чтобы все внешние нагрузки, действующие на сооружение, были приложены к узловым точкам ее дискретной модели. Поэтому, точки приложения сосредоточенных сил делают узловыми, а нагрузки распределенные по длине стержня, преобразуют к узловым.

 
 

Для преобразования вне узловой нагрузки к узловой используют таблицы метода перемещений (см. рис. б).

В узлах, где отдельные элементы соединяются между собой жестко, имеется три неизвестных перемещения, в шарнирных узлах – два. Следовательно, количество неизвестных МКЭ можно определить:

n = 3nж.уз. + 2nш.уз.

 
 

Положительные направления и порядок нумерации неизвестных принимаем следующий

 

       
   

Дискретная модель сооружения в целом, которая связывается с общей системой осей координат, характеризуется n параметрами перемещений Zi и узловых силовых воздействий Pi, составляющих векторы

Каждый конечный элемент связан с местной системой осей координат и характеризуется своими параметрами узловых перемещений {V} и соответствующими узловыми усилиями {S}’. Кроме того, для элементов, в пределах которых вне узловая нагрузка преобразуется к узловой, формируют векторы грузовых усилий {So}.

В разрешающем уравнении МКЭ

[r]{Z}={P},

матрица [r], которая называется матрицей жесткости сооружения в целом, формируется из матриц жесткости отдельных элементов.

 

<== предыдущая лекция | следующая лекция ==>
Идея метода конечных элементов (МКЭ) | Матрица жесткости КЭ в местной системе осей координат
Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 483; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.