Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Фазовая плотность вероятности

Наблюдая поведение классической макросистемы можно определить вероятность того, что она будет обнаружена в некотором определенном микросостоянии. Пусть это микросостояние определяется малым элементом фазового объема, а процесс протекает за время от 0 до t. Пусть в течение времени фазовая траектория проходит в пределах. Тогда вероятность того, что система во время будет обнаружена в физическом состоянии, равна:.

Предел этого отношения при неограниченном увеличении времени наблюдения t определяет вероятность того, что макросистема находится в определенном микросостоянии:

, где функция называется фазовой плотностью вероятности (функция распределения ансамбля систем) – размерная функция.

Она удовлетворяет условию нормировки

,.

Тогда среднее значение некоторой динамической функции можно записать в виде

.

Здесь интегрирование идет по всему фазовому пространству.

 

1.2. Уравнение Лиувилля. Теорема Лиувилля

Рассмотрим поведение во времени фазового объема, соответствующего замкнутой системе.

 
 
Изменение во времени происходит за счет изменения координат и импульсов частиц.

В этом смысле движение изолированной системы в фазовом пространстве подобно потоку несжимаемой жидкости. Микросостояния не возникают и не исчезают, а изменяются в соответствии с законами механики.

Рассмотрим изменение во времени величины (эволюцию ансамбля). В начальный момент. Нужно предсказать.

Чисто формальным образом это передвижение фазовых точек можно рассматривать как стационарное течение «газа» в 2S-мерном фазовом пространстве и применять к нему известное уравнение непрерывности, выражающее собой неизменность массы (числа точек). Эта аналогия основана на том, что траектория точки не может закончиться или начаться вследствие однозначности уравнений механики. То есть фазовые точки в изолированной системе не исчезают и не появляются.

Для газа таких точек можно записать уравнение непрерывности, которое представляет собой закон их сохранения:

 

(– плотность, – скорость газа), а для стационарного течения

.

Обобщая последнее уравнение на случай 2S-мерного пространства, получим

.

В данном случае «координатами» являются координаты q и импульсы p, а «скоростями» – производные по времени, определяемые уравнениями механики. Таким образом, имеем:

. (*)

Используя уравнения движения из классической механики получим, что уравнение может быть представлено в виде (при этом левая часть представляет собой полную производную по времени от функции распределения):

– уравнение Лиувилля.

Следствием уравнения Лиувилля является сохранение фазового объема при движении системы (теорема Лиувилля). Однако форма объема при этом может меняться. Сохранение объема следует из факта сохранения числа фазовых точек в пространстве: микросостояния не исчезают и не появляются вследствие однозначности уравнений механики. Тогда можно записать:

 

Отсюда сразу следует сохранение элементарного объема.

Из теоремы Лиувилля следует, что функция распределения должна выражаться через такие комбинации p и q, которые с течением времени остаются постоянными. Это механические интегралы движения. Если отвлечься от поступательного и вращательного движений системы как целого, то функция распределения должна определяться энергией системы.

Математическим выражением сохранения фазового объема является равенство единице якобиана (смысл Якобиана как раз и состоит в отношении объемов при преобразовании координат):

.

Новые переменные связаны со старыми следующим образом:

.

Равенство модуля якобиана единице как раз и означает сохранение фазового объема.

 

 

1.3. Распределения Гиббса

При статистическом методе для определения основной характеристики (X – совокупность координат и импульсов всех частиц системы) используются те или иные модели строения рассматриваемого тела.

Оказывается возможным нахождения общих свойств общих статистических закономерностей, которые не зависят от строения вещества и являются универсальными. Выявление таких закономерностей является основной задачей термодинамического метода описания тепловых процессов. Все основные понятия и законы термодинамики могут быть раскрыты на основе статистической теории.

Для изолированной (замкнутой) системы или системы в постоянном внешнем поле состояние называется статистически равновесным, если функция распределения не зависит от времени.

Конкретный вид функции распределения рассматриваемой системы зависит как от совокупности внешних параметров, так и от характера взаимодействия с окружающими телами. Под внешними параметрами в данном случае будем понимать величины, определяемые положением не входящих в рассматриваемую систему тел. Это, например, объем системы V, напряженность силового поля и т.д. Рассмотрим два наиболее важных случая:

1) Рассматриваемая система энергетически изолирована. Полная энергия частиц Е постоянна. При этом. Е можно включить в а, но выделение его подчеркивает особую роль Е. Условие изолированности системы при заданных внешних параметрах можно выразить равенством:

2) Система не замкнута – возможен обмен энергией. В этом случае нельзя найти, она будет зависеть от обобщенных координат и импульсов частиц окружающих тел. Это оказывается возможным, если энергия взаимодействия рассматриваемой системы с окружающими телами.

При этом условии функция распределения микросостояний зависит от средней интенсивности теплового движения окружающих тел, которую характеризуют температурой Т окружающих тел:.

Температура также играет особую роль. Она не имеет (в отличие от а) аналога в механике: (не зависит от Т).

В состоянии статистического равновесия не зависит от времени, неизменны и все внутренние параметры. В термодинамике такое состояние называют состоянием термодинамического равновесия. Понятия статистического и термодинамического равновесия эквивалентны.

<== предыдущая лекция | следующая лекция ==>
Основные положения статистической физики | Функция распределения микросостояний системы в термостате – каноническое распределение Гиббса
Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 833; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.