КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Слабоустойчивые совместные решения по Ю. Б. Гермейеру
Динамические модели принятия решений Лекция 9 Ранее исследовались статические модели принятия решений в сложных системах, в том числе иерархических системах управления (ИСУ). Однако особый интерес представляет изучение динамических систем. В этом случае возникает целый ряд специфических проблем. Их решение позволяет делать качественные выводы, которые не могли быть получены при исследовании статических моделей принятия решений. Дело в том, что динамике экономического (производственного) процесса, как правило, сопутствует динамика процесса принятия решений. «Развёртка» этого процесса во времени позволяет своевременно и эффективно использовать приток дополнительной информации и адаптироваться к изменению условий производства. В результате у центра и элементов ИСУ появляются новые, значительно более эффективные возможности влиять на выбор управлений элементами нижних уровней, направлять и контролировать их деятельность. Для статических моделей было показано, что любая точка из взаимовыгодного множества может являться решением задачи – ситуацией равновесия по Нэшу при соответствующем усложнении стратегий и процедур обмена информацией. Аналогичный результат имеет место и для динамических моделей. А именно: любая точка из взаимовыгодного множества, в котором игроки имеют выигрыш, превышающий их минимаксный результат, также может быть ситуацией равновесия. При этом динамика позволяет упростить класс используемых стратегий. Более того, сложная по постановке задача поиска ситуации равновесия на стратегиях, как и в статике, сводится к задаче оптимизации на исходных управлениях (к задаче оптимального управления). Эти свойства проявляются уже на простейших динамических моделях повторяющихся игр. Пусть задана исходная игра Г i Для этой игры определим следующие величины (минимаксные выигрыши):
Введем стратегии наказания:
И определим множества: , i Множество – взаимовыгодное множество, при выборе управления из этого множества игроки получают выигрыш, не меньший, чем их минимаксный результат. Пусть - совместный выбор, являющийся результатом неформального компромисса. Введём обозначения: ,
Замечание 1. Очевидно, имеет место цепочка неравенств:
Определение. Ситуация называется слабоустойчивым совместным решением по Ю. Б. Гермейеру, если выполняются неравенства (1) Таким образом, построение устойчивой ситуации проводится при условии дальнейшего повторения игры, что приводит к возможности наказания игрока, отклонившегося от выбора, соответствующего равновесной ситуации.
Полученное решение состоит из двух компонент: 1) Стационарное решение; 2) Реализация минимума функции в последующих повторениях, если игрок нарушил соглашение по выбору При этом предполагается, что результаты предыдущих повторений становятся известными к следующему повторению, а выигрыши игроков определяются в виде суммы выигрышей в повторениях игры. Замечание 2. В случае получаем классическое определение ситуации равновесия по Нэшу:
Замечание 3. Так как, то из определения получим
то есть, i
Следовательно, то есть компромиссное решение может быть выбрано только из взаимовыгодного множества.
Дата добавления: 2014-01-04; Просмотров: 281; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |