КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
В 11. Оценка тесноты связи признаков и ранжир факторов по силе их влияния на результат в множественном корреляционно-регрессионном анализе
Оценка тесноты связи Y со всеми Xi производится с помощью совокупного коэффициента (или индекса) детерминации: , (6.44) где факторная дисперсия общая дисперсия остаточная дисперсия и совокупного коэффициента корреляции:
(6.45)
Совокупный коэффициент детерминации R2 может быть выражен в процентах. Он показывает, какая часть вариации результативного показателя объясняется вариацией факторов, включенных в модель. Совокупный коэффициент корреляции всегда 0<R<1. Он отражает только тесноту связи и не может отражать направление связи (как парный коэффициент корреляции). Чем ближе значение R к 1, тем влияние факторов на результат сильнее, чем ближе к 0 – тем влияние слабее. Расчет совокупного коэффициента детерминации можно произвести, используя связь его с парными коэффициентами корреляции rij и коэффициентами регрессии в стандартизированном виде, т.е. β –коэффициенты (см. вопрос 14)
(6.46)
Если рассматривается зависимость результата от двух факторов, то расчет совокупных коэффициентов корреляции и детерминации можно упростить, используя значения парных коэффициентов корреляции и детерминации.
(6.47)
При множественной корреляционно-регрессионной связи необходимо выделить тесноту связи результативного показателя индивидуально с каждым фактором, для чего вычисляют коэффициенты раздельной корреляции и детерминации. Коэффициентом раздельной детерминации называется произведение парного коэффициента корреляции фактора Хi на его β –коэффициент
(6.48)
Последняя формула отражает тоже равенство, что и формула (6.46). Корень квадратный из коэффициента раздельной детерминации даст коэффициент раздельной корреляции.
(6.49)
При построении уравнения регрессии важным моментом является последовательность включения факторов в уравнение регрессии. И здесь большую роль играет системная связь между каждой парой факторов, включенных в модель, и их группами. Поэтому важным представляется выделение дополнительной доли вариации результативного показателя (У) после включения в модель дополнительно фактора Хк. Такая вариация объясняется частными коэффициентами корреляции и детерминации. В общем виде частный индекс или коэффициент детерминации находят по формуле: (6.50)
Как правило, частные коэффициенты корреляции и детерминации меньше парных коэффициентов корреляции и детерминации. В случает анализа модели У по двум факторам Х1 и Х2 для расчета частных коэффициентов корреляции можно использовать следующие формулы:
(6.51)
(6.52)
В формуле 6.51 отражена связь между У и Х1 при условии неизменности Х2, в формуле 6.52 – связь между У и Х2 при условии постоянства Х1. Частные коэффициенты детерминации найдем, возведя в квадрат частные коэффициенты корреляции. Их сумма близка к значению совокупного коэффициента детерминации. Однако не следует упрощать смысл анализируемых показателей связи, т.к. вопросы анализа силы влияния факторов на результативный показатель можно рассматриваться в зависимости от последовательности включения факторов в модель от их «системного» влияния и т.д. Многие проблемные вопросы оценки силы влияния факторов на результативный показатель рассматриваются в современных учебниках статистики российских авторов. Следующая группа показателей, отражающих связи факторов, включенных в модель, – это коэффициенты эластичности и – коэффициенты. Коэффициенты эластичности вычисляются на базе первых частных производных от функции связи. Коэффициент эластичности показывает, на сколько процентов в среднем изменится результат (У) при изменении фактора Хi в среднем на 1 % при условии неизменности остальных факторов, входящих в модель. (6.53)
(6.54)
– коэффициент показывает, на сколько среднеквадратических отклонений изменяется результат (У) при изменении фактора Хi на одно свое среднеквадратическое отклонение, при неизменности остальных факторов входящих в уравнение.
Примечание: Для парной линейной регрессии выполняется равенство . Поэтому в парном корреляционно-регрессионном анализе – коэффициент не рассматривался.
В 12. Оценка достоверности результатов произведенного корреляционно-регрессионного анализа. Одним из требований при построении многофакторных моделей является требование к объему анализируемой совокупности, т.е. выборка должна быть репрезентативной (представительной). Однако это требование не всегда выполняется. Поэтому рассмотрим вопросы оценки достоверности полученных параметров уравнения и тесноты связи как для достаточно большой совокупности, так и для малой выборки. а) Для репрезентативной выборки: Оценка происходит по той же схеме, что и при парной линейной зависимости, для чего могут быть использованы критерий Стьюдента и критерий Фишера. Расчет параметров t-критерия и F-критерия. Для каждого частного коэффициента регрессии рассчитывается значение t-критерия по формуле: (6.55)
где в знаменателе стоит дисперсия частного коэффициента регрессии
(6.56) где: Ri — величина множественного коэффициента корреляции по фактору Xi c остальными факторами. Однако проще использовать F-критерий, т.к. с его помощью можно оценить достоверность всех полученных показателей (параметров и числовых характеристик). (6.57)
где: n — число факторов в модели, N – объем совокупности. Табличное значение F-критерия найдем по таблицам Фишера, определив столбец по значению числа степеней свободы ν1=n+1, строку – по ν2=N-n-1. Если Fрасч.>=Fтабл., то нуль-гипотеза отвергается и подтверждается достоверность произведенного корреляционно-регрессионного анализа. Если при построении модели используется только два фактора (Х1 и Х2), то можно использовать упрощенную формулу Fрасч.= (6.58)
Табличное значение F-критерия находим по значениям ν1=2, ν2=N-3. ν1 – определяет графу, ν2 – строку таблицы. б) Для малой выборки: При небольшом числе наблюдений (а это часто бывает при исследовании небольшой совокупности, например, только по хозяйствам одного-двух районов), величина множественного коэффициента корреляции и детерминации завышается. Поэтому чтобы оценить реальную тесноту связи и ее достоверность, необходимо произвести следующие расчеты. Сначала проверим выполнение соотношения >= 20 Если это соотношение выполняется, то все дальнейшие расчеты выполняем по пункту а), если не выполняется, то необходимо скорректировать значение множественного коэффициента корреляции и оценить его достоверность. Рассчитаем скорректированный совокупный коэффициент корреляции
(6.59) Произведем оценку достоверности скорректированного множественного коэффициента корреляции, используя формулы (6.57) или (6.58) и соответствующий алгоритм использования критерия Фишера.
Дата добавления: 2014-01-04; Просмотров: 1718; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |