КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Лекция 16. Нелинейные цепи переменного тока
Цель лекции: рассмотреть основные графические и аналитические методы расчёта нелинейных цепей переменного тока. 16.1Особенности нелинейных цепей при переменных токах Наиболее существенная особенность расчета нелинейных цепей при переменных токах заключается в необходимости учета в общем случае динамических свойств нелинейных элементов, т.е. их анализ следует осуществлять на основе динамических вольт-амперных, вебер-амперных, и кулон-вольтных характеристик. Если нелинейный элемент является безынерционным, то его характеристики в динамических и статических режимах совпадают, что существенно упрощает расчет. Однако на практике идеально безынерционных элементов не существует. Отнесение нелинейного элемента к классу безынерционных определяется скоростью изменения входных воздействий: если период Т переменного воздействия достаточно мал по сравнению с постоянной времени , характеризующей динамические свойства нелинейного элемента, последний рассматривается как безынерционный; если это не выполняется, то необходимо учитывать инерционные свойства нелинейного элемента. Другой важной особенностью нелинейных элементов в цепи переменного тока является вызываемое ими появление высших гармоник даже при наличии в цепи только источников синусоидального напряжения и (или) тока. На этом принципе строится, например, ряд умножителей частоты, а также преобразователей формы тока или напряжения. Использование динамических характеристик нелинейных элементов позволяет осуществлять расчет нелинейных цепей для мгновенных значений переменных, т.е. проводить наиболее точный и полный анализ. Однако, в целом ряде случаев, такой расчет может оказаться достаточно трудоемким. Поэтому в зависимости от цели решаемой задачи, а также от требований к точности получаемых результатов, помимо динамической характеристики, могут использоваться нелинейные характеристики по первым гармоникам и для действующих значений. 16.2 Графический расчёт с использованием характеристик для мгновенных значений В качестве примераиспользования характеристик для мгновенных значений построим при синусоидальной ЭДС кривую тока в цепи на рисунке 16.1, для которой ВАХ диода представлена на рисунке 16.2. Рисунок 16.1 Рисунок 16.2 1. Строим результирующую ВАХ цепи (рисунок 16.2) согласно соотношению 2. Находя для различных значений с использованием полученной кривой соответствующие им значения тока, строим по точкам (рисунок 16.3) кривую искомой зависимости . Важнейшим элементом в цепях переменного тока является катушка с ферромагнитным сердечником. В общем случае кривая зависимости имеет вид гистерезисной петли, но, поскольку в устройствах, работающих при переменном напряжении, используются магнитные материалы с узкой петлей гистерезиса, в большинстве практических случаев допустимо при расчетах использовать основную кривую намагничивания. Условное изображение нелинейной катушки индуктивности приведено на рисунке 16.4. Рисунок 16.3 Здесь – основной поток, замыкающийся по сердечнику, - поток рассеяния, которому в первом приближении можно поставить в соответствие потокосцепление рассеяния , где индуктивность рассеяния в силу прохождения потоком части пути по воздуху. Так как характеристика катушки (см. рис. 7) симметрична относительно начала координат, а напряжение симметрично относительно оси абсцисс (оси времени), то кривая также должна быть симметричной относительно последней. Находя для различных значений с использованием кривой соответствующие им значения тока, строим по точкам (рисунок 16.5) кривую зависимости. Рисунок 16.5 Анализ полученного результата позволяет сделать важный вывод: при синусоидальной форме потока напряжение на катушке синусоидально, а протекающий через нее ток имеет явно выраженную несинусоидальную форму. Аналогично можно показать, что при синусоидальном токе поток, сцепленный с катушкой, и напряжение на ней несинусоидальны. 16.3 Метод эквивалентных синусоид При анализе нелинейной цепи данным методом реальные несинусоидально изменяющиеся переменные заменяются эквивалентными им синусоидальными величинами, действующие значения которых равны действующим значениям исходных несинусоидальных переменных. Кроме того, активная мощность, определяемая с помощью эквивалентных синусоидальных величин, должна быть равна активной мощности в цепи с несинусоидальной формой переменных. Переход к эквивалентным синусоидам позволяет использовать при анализе цепей векторные диаграммы. Рассмотрим данный метод на примере исследования явлений в цепях, содержащих нелинейную катушку индуктивности и линейный конденсатор (феррорезонансных цепях). Различают феррорезонанс в последовательной цепи (феррорезонанс напряжений) и феррорезонанс в параллельной цепи (феррорезонанс токов). Рассмотрим первый из них на основе схемы на рисунке 16.6. Для этого строим (рисунок 16.7) прямую зависимости . Далее для двух значений сопротивлений (и ) строим графики зависимостей : для -согласно соотношению (кривая на рисунке 16.7); для -согласно выражению Рисунок 16.6 Рисунок 16.7 (кривая на рисунке 16.7). Точка пересечения кривой с прямой соответствует феррорезонансу напряжений. Феррорезонансом напряжений называется такой режим работы цепи, содержащей последовательно соединенные нелинейную катушку индуктивности и конденсатор, при котором первая гармоника тока в цепи совпадает по фазе с синусоидальным питающим напряжением. В соответствии с данным определением при рассмотрении реальной катушки действительная вольт-амперная характеристика (ВАХ) цепи, даже при значении сопротивления последовательно включаемого резистора , в отличие от теоретической (кривая на рисунке 16.7) не касается оси абсцисс и смещается влево, что объясняется наличием высших гармоник тока, а также потерями в сердечнике катушки. Напряжение на катушке индуктивности , где -сопротивление, характеризующее потери в сердечнике, в режиме феррорезонанса не равно напряжению на конденсаторе. Из построенных результирующих ВАХ цепи видно, что при увеличении питающего напряжения в цепи имеет место скачок тока: для кривой -из точки 1 в точку 2, для кривой -из точки 3 в точку 4. Аналогично имеет место скачок тока при снижении питающего напряжения: для кривой -из точки 5 в точку 0; для кривой -из точки 6 в точку 7. Явление скачкообразного изменения тока при изменении входного напряжения называется триггерным эффектом в последовательной феррорезонансной цепи.
Дата добавления: 2014-01-04; Просмотров: 3215; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |