Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Теорема Штейнера




Момент инерции является мерой инертности тела при вращательном движении и по определению равен сумме произведений масс частиц тела mi на квадраты их расстояний r до оси вращения:

. (10.5)

Представим вектор от оси С– С до некоторой точки массы mi как сумму векторов (рис. 10.3). Подставив в определяющую формулу момента инерции (10.5) радиус - вектор r и возведя сумму в квадрат, получим

 

. (10.6)

 

Первый член этого уравнения J 0 – момент инерции тела относительно оси О – О, проходящей через центр масс. Во втором члене сумма определяет положение центра масс относительно оси О – О, и так как ось проходит через центр масс, то эта сумма равна нулю. Третий член – это произведение суммы масс частиц (то есть массы тела) на квадрат расстояния между осями. Итак, момент инерции равен

 

Jс = J 0 + m а 2. (10.7)

 

Это уравнение теоремы Штейнера: момент инерции тела относительно произвольной оси равен сумме момента инерции тела относительно оси, проходящей через центр масс и параллельной данной оси, и произведению массы тела на квадрат расстояния между осями.

В тех случаях, когда момент инерции относительно оси, проходящей через центр масс J 0 , можно сравнительно легко рассчитать, теорема Штейнера позволяет определить момент инерции относительно произвольной оси Jс, избежав весьма трудоемких расчетов.




Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 393; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.