КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Ионная адсорбция
Адсорбция электролитов не укладывается в рамки учения о молекулярной адсорбции и требует специального рассмотрения, поскольку адсорбентможет по различному адсорбировать ионы, на которые распадается молекула электролита в растворе. Так как наибольшее практическое значение имеют водные растворы электролитов, рассмотрим лишь адсорбцию электролитов из таких растворов. На адсорбции ионов существенным образом сказывается природа адсорбента. Ионы, способные поляризоваться, адсорбируются обычно только на поверхностях, состоящих из полярных молекул или из ионов. Поэтому ионную адсорбцию часто называют также полярной адсорбцией. Микроучастки поверхности, несущие определенный заряд, адсорбируют противоположно заряженные ионы. При этом ионы электролита, несущие противоположный знак, непосредственно не адсорбируются, но под действием сил электростатического притяжения остаются вблизи адсорбированных ионов, образуя с ними на поверхности адсорбента так называемый двойной электрический слой. Строение этого слоя подробно рас смотрено в гл. VII, посвященной электрическим свойствам коллоидных частиц. Радиус ионовсильно влияет на их способность адсорбироваться. Из ионов одинаковой валентности максимальную адсорбционную способность проявляют ионы наибольшего радиуса. Причина этого явления, с одной стороны, заключается в большой поляризуемости таких ионов и, следовательно, их способности притягиваться поверхностью, состоящей из ионов или полярных молекул, с другой стороны, в меньшей гидратации ионов (чем больше радиус иона, тем меньше при одном и том же заряде его гидратация). Гидратация вообще препятствует адсорбции ионов, так как наличие гидратной оболочки уменьшает электрическое взаимодействие. Различие в гидратации одновалентных катионов иллюстрирует схема, приведенная на рисунке: Соотношение между истинными радиусами одновалентных катионов и их радиусами в гидратированном состоянии.
Сплошная линия обозначает границу самого иона, а пунктирная – границу его гидратной оболочки. Из схемы видно, что ион лития гораздо более гидратирован, чем ион цезия. Ряды ионов, составленные в порядке уменьшения их способности связывать среду, называются лиотропными рядами, или рядами Гофмейстера. Одновалентные катионы можно поставить в следующий ряд по возрастающей способности адсорбироваться: Li+ <Na+ <K+ <Rb+ < Cs+ Для двухвалентных катионов это будет следующий ряд: Mg2+ < Са2+ < Sr2+ <Ва2+ Одновалентные анионы по их возрастающей способности адсорбироваться располагаются в такой последовательности: Сl– < Br– < NO3– < I– < NCS– Адсорбционная способность ионов весьма сильно зависит также от их валентности. Чем больше валентность иона, тем сильнее он притягивается противоположно заряженными микроучастками поверхности. Катионы различной валентности по их возрастающей адсорбционной способности можно расположить в следующий ряд: К+<< Са2+ << А13+ << Th4+ Особый интерес для коллоидной химии представляет адсорбция ионов поверхностью кристалла, в состав которого входят ионы той же природы. При этом адсорбцию можно рассматривать как кристаллизацию, т. е. как достройку кристаллической решетки способным адсорбироваться ионом. Согласно Пакету и Фаянсу, кристаллы достраиваются лишь теми ионами или атомами, которые входят в их состав. Например, кристаллы AgI, внесенные в раствор KI, адсорбируют на поверхности иодид-ионы. Если же кристаллы AgI внести в раствор AgNO3, то происходит адсорбция ионов серебра. Понятно, что силы, под влиянием которых происходит такая достройка, являются химическими и одновременно электростатическими силами, и ионы, достраивающие кристалл, адсорбируются в этом случае особенно прочно. Ниже показана схема достройки кристалла иодида серебра в растворе иодида калия (первоначальная граница кристалла AgI обозначена на схеме пунктиром).
Достройка кристалла иодида серебра в растворе иодида калия
Существенно, что достраивать кристаллическую решетку способны не только ионы, входящие в состав решетки, но и изоморфные с ними. Важно также, что образовать прочную связь с поверхностью кристалла могут не только ионы, входящие в кристаллическую решетку, но и вообще атомные группы, близкие к атомным группам, находящимся на поверхности. Так, уголь прочно удерживает органические радикалы, а окиси и гидраты окисей алюминия и железа прочно связывают группы, содержащие кислород. На поверхности адсорбента могут адсорбироваться как ионы, так и молекулы, из которых они образовались, причем между первыми и последними существует адсорбционное равновесие. Наличие молекулярной формы адсорбированного электролита на поверхности коллоидных частиц было показано в работах В. А. Каргина на примере ферри- и алюмо-золей.
Дата добавления: 2014-01-04; Просмотров: 1839; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |