КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Витальное и сигнальное действие факторов
ТРАДИЦИОННЫЕ КЛАССИФИКАЦИИ Те м а 3 КЛАССИФИКАЦИЯ ЭКОЛОГИЧЕСКИХ ФАКТОРОВ Любой организм в природной среде подвергается воздействию огромного числа факторов. Эколог не должен удовлетворяться составлением их перечня. Он должен, насколько это возможно, следовать афоризму Гете, вложенному им в уста Мефистофеля: «Чтобы разобраться в бесконечном, надо сперва различать, а затем связывать». Систематизация экологических факторов поможет выбрать важнейшие и оценить характер их влияния на изучаемые виды. Классическим и наиболее традиционным делением экологических факторов считается их подразделение на две основные группы: абиотические и биотические. Первая включает факторы климатические (температура, свет, влажность, давление и др.), физические свойства почвы и воды. Ко второй относятся факторы питания и различные формы взаимодействия особей и видов между собой (хищничество, конкуренция, паразитизм и др.). Однако подобное подразделение не представляется исчерпывающим. Действительно, иногда бывает трудно отнести данный фактор к той или иной группе. Так, температура, если ее рассматривать как абиотический фактор, часто изменяется благодаря присутствию живых организмов. Например, в лабораторных условиях личинки мучного хрущака (Tenebrio molitor) склонны образовывать скопления, в которых при слишком холодной окружающей среде температура повышается и ее величина становится ближе к значению, наиболее благоприятному для развития организмов. При температуре воздуха +17 °С температура в скоплениях личинок иногда достигает +27 °С. Наиболее детальные исследования изменений микроклимата, вызываемых популяциями малого мучного хру- щака (Tribolium castaneum иТ. confusum), провел Пименталь (1958). Насекомых выращивали в муке, насыпанной в чашки Петри, которые помещали в термостат. Температура воздуха в термостате 29+0,5 °С, относительная влажность — 70±5%. Каждая чашка содержала 8 г муки и до 300 насекомых. Было установлено, что при этих условиях температура в чашках повышалась на 0,4 °С через 24 ч, а затем она начинала медленно падать, а относительная влажность увеличивалась на 11% за две недели. Таким образом, рост температуры и относительной влажности зависит от скопления насекомых, и это говорит о том, что микроклимат обусловливается одновременно абиотическими факторами среды и биотическими факторами, в данном случае присутствием популяции насекомых. На элеваторах с большим количеством зерна наличие зерноядных насекомых иногда вызывает повышение температуры на 25 °С по сравнению с температурой окружающей среды. Наиболее ярким примером влияния, которое организмы могут оказывать на микроклимат, служит регуляция температуры в ледяной берлоге белого медведя. Когда там появляется медвежонок, температура воздуха в ней на 40 0С выше, чем снаружи. В связи с нечеткостью первой классификации была разработана другая, в соответствии с которой все экологические факторы подразделяются на две категории: не зависящие от плотности популяции и зависящие от плотности популяции факторы. В результате действия на популяции факторов первой категории процент гибнущих особей не зависит от их общей численности или плотности; при действии факторов второй категории он растет пропорционально увеличению их плотности. К факторам первой категории относятся главным образом климатические. Так, под действием волны холода может погибнуть определенная часть особей популяции, причем независимо от ее плотности. К факторам, зависящим от плотности популяции, относятся преимущественно биотические. Дальнейшее совершенствование этой классификации связано с подразделением категории факторов, зависящих от плотности, на факторы прямой зависимости, которые приводят к повышению смертности в популяции при росте ее плотности, и факторы обратной зависимости, которые снижают смертность, когда плотность популяции возрастает. Конкуренция, хищничество, паразитизм — важнейшие факторы прямой зависимости. Действие факторов обратной зависимости можно проиллюстрировать на примере скоплений клопов, инъецирующих слюну в пищевой субстрат. Чем больше клопов в скоплении, тем успешнее они растворяют пищевой материал и тем меньше число погибших особей. Северные олени сообща извлекают ягель из-под корки снега. Недоступность пищи может вызвать гибель определенной части особей, но их будет меньше, если животные действуют сообща. Однако разграничение факторов на зависящие или не зависящие от плотности популяции оказалось еще менее удовлетворительным, чем их деление на биотические и абиотические, поскольку в данном случае экологические факторы выступают не сами по себе, а в тесной связи с плотностью популяции. Действие же экологических факторов не ограничивается лишь изменением количественных характеристик популяций. Безусловно, экологические факторы оказывают чрезвычайно большое влияние на численность и концентрацию особей в популяциях, однако это не единственная форма их воздействия. Экологические факторы могут также вызывать изменение географического распространения, как отдельных популяций, так и видов в целом, появление различных адаптивных модификаций, количественные изменения обмена веществ, диапаузу, определенные ФПР и т. п. Если положить в основу классификации экологических факторов эффект, который вызван их воздействием, а именно этот принцип был использован в преды- дущей классификации, то более рациональным выглядит другое их разграничение, учитывающее не только изменение плотности популяции, но иные формы влияния на живые организмы. При этом все экологические факторы делятся на две основные группы: витальные (энергетические) и сигнальные. Первые оказывают непосредственное воздействие на жизнедеятельность организмов, меняют их энергетическое состояние. К таким факторам можно отнести температуру, пищу, конкуренцию, хищничество, паразитизм и др. Факторы второй группы, выполняющие сигнальную роль, несут информацию об изменении энергетических характеристик: продолжительность светового дня, феромоны и др. Некоторые факторы, рассматриваемые "в качестве абиотических, могут обладать как энергетическим, так и сигнальным действием. Примером может служить свет, который считается одним из основных экологических факторов. Свет служит главным источником энергии для фотосинтеза растений и играет важнейшую роль в продуктивности экосистем. В то же время его главная экологическая роль состоит в осуществлении биологических ритмов разной продолжительности. В этом проявляется сигнальное действие света. Подобная «двойственность» света как экологического фактора снижает ценность и этой классификации. Рациональнее выделять витальное и сигнальное действие экологического фактора, что было предложено В. П. Тыщенко (1980). Специфика витального действия различных экологических факторов заключается в том, что одни из них (например, температура) позволяют выделить две неоптимальные (субоптимальная и супероптимальная) и две летальные зоны, расположенные по обе стороны от оптимума, а другие выявляют только одну левую (пища) или одну правую (хищники и паразиты) часть полного графика и соответственно по одной неоптимальной и летальной зоне (рис. 3.1). Для организмов климатические, пищевые и биотические условия являются не только агентами, непосредственно влияющими на выживаемость, но сигналами, ука-
Рис. 3.1. Схема, иллюстрирующая витальное действие температуры, пищи, хищников и паразитов (по Тыщенко, 1980). Зоны действия экологических факторов: лет.— летальные, оп.— оптимальные, суб.— субоптимальные, супер.— супероптимальные. зывающими на возможные сдвиги витального действия экологических факторов в неоптимальные и летальные зоны. Например, осеннее укорочение дня воспринимается животными и растениями как сигнал скорого наступления зимнего периода с присущими ему неблагоприятными условиями (низкие температуры, промерзание почвы, недостаток или полное отсутствие пищи). Подобное действие экологических факторов на организмы предлагается называть сигнальным действием. Если свет обладает как энергетическим, так и сигнальным действием, то температура и влажность представляются исключительно энергетическими факторами. Это связано с тем, что у растений и животных, особенно пойкилотермных, повышение температуры тела вызывает ускорение всех физиологических процессов. Поэтому чем выше температура, тем меньше времени не- обходимо для развития отдельных стадий и всего жизненного цикла организма. Для развития гусениц бабочки-капустницы от яйца до куколки при температуре 10 °С требуется 100 сут, а при 26 °С — только 10 сут. Как видно, скорость развития увеличивается в 10 раз. Зависимость скорости развития от температуры выражается S-образной кривой (сигмоидная зависимость). Скорость развития может быть представлена как величина, обратная времени развития, или же как величина, равная среднему проценту особей, развившихся в единицу времени. При уменьшении точности эксперимента можно допустить, что зависимость скорости развития от температуры носит линейный характер (рис. 3.2). При этом прямая V paзв = f(t°) пересекает шкалу температур в некоторой точке а, которая называется нулем, или порогом, развития, т. е. это температура, ниже которой развитие не происходит. Параметр у(t° - а), где у—время развития, t° —температура, при которой происходит развитие, есть величина постоянная для каждого вида и называется суммой эффективных температур: y(t° - a) = St°эфф. Кривая, выражающая отношение y = S St°эфф. /(t° - а), представляет собой ветвь равносторонней гиперболы. Рис. 3.2. Зависимость скорости развития кузнечика Austroicetes cruciata от температуры (из Бигона, Харпера, Таунсенда, 1989). Найденная зависимость находит практическое использование. Зная, что сумма эффективных температур — величина, постоянная для вида, можно рассчитать порог развития. Допустим, что при температуре 16°С длительность развития составляет 24 дня, при 27 °С — 8 дней, отсюда: 24(16 - а) = 8(27 - а). Решение этого равенства дает возможность определить порог развития в данном конкретном случае. Он составляет 10,5 °С. Определив порог развития, нетрудно найти сумму эффективных температур вида. Однако на практике значение константы, как правило, известно и требуется установить длительность развития при конкретной температуре. Этот параметр лежит в основе любого фенологического прогноза. Для колорадского жука порогом развития является температура 12 °С. При постоянной температуре 25 °С личиночная фаза длится от 14 до 15 дней, а при 30 °С— 5.5 сут. При температуре выше 33 °С развитие останавливается. Сумма эффективных температур составляет 330—335 °С. Этот результат был использован в Восточной Европе для предсказания продолжительности развития колорадского жука и определения числа поколений, появляющихся в течение года. В соответствии с прогнозом выбирали необходимые средства борьбы с этим насекомым, чтобы защитить от него посадки картофеля. Первая обработка, направленная против молодых личинок, проводится, когда сумма эффективных температур достигает 150 °С, вторая — против личинок второго возраста, когда сумма эффективных температур составляет 475 °С. Температура влияет не только на скорость развития, но и на многие другие стороны жизнедеятельности организмов. Так, она сказывается на количестве потребляемой пищи, на плодовитости, уровне половой активности и т. д. Как и температура, влажность отличается многосторонностью воздействия на растения и животных. Прежде всего, этот фактор влияет на скорость развития. Для комнатной мухи показана линейная зависимость между скоростью развития и уровнем влажности: чем выше влажность, тем больше скорость развития и, следовательно, меньше продолжительность жизни.
Дата добавления: 2014-01-04; Просмотров: 2952; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |