Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Термоядерный синтез




Термоядерными реакциями называются ядерные реакции, протекающие между легчайшими ядрами при очень высоких температурах среды. Высокие температуры необходимы для сообщения ядрам, участвующих в реакции, кинетической энергии для преодоления кулоновского барьера и сближения ядер до расстояний, когда начинается ядерное взаимодействие. Легчайшим ядрам не только проще преодолевать кулоновский барьер, но и энергетически выгодно сливаться друг с другом в более тяжелые ядра с выделением энергии. Это следует из анализа кривой удельной связи, приведенной на рис. 1.4.2. Такой процесс слияния ядер, имеющих малую энергию связи, в более тяжелые и сильно связанные ядра, носит названия реакций синтеза.

По современным представлениям термоядерные реакции протекают в недрах звезд и Солнца, в результате чего из протонов получаются ядра гелия. Этот процесс может иметь несколько различных промежуточных стадий, но конечный результат один - четыре протона превращаются в ядро гелия:

. (4.7.1)

В процессе этого превращения выделяется 26,7 МэВ энергии, значительная часть которой (от 2 до 19 %) уносится нейтрино. Из-за чрезвычайно малого сечения этого процесса его невозможно осуществить в земных условиях.

На Земле термоядерные реакции в относительно крупных масштабах удалось осуществить только в испытательных взрывах термоядерных, или «водородных» бомб. Вероятная схема реакций синтеза в водородной бомбе включает реакции (4.18), (4.19), а также реакцию

n + 6Li → 4He +3H + 4,79 МэВ, (4.7.2)

которая служит для получения трития. В центре водородной бомбы имеется ядерная бомба деления, которая окружена оболочкой из комбинированного термоядерного горючего, чаще всего из твердого химического соединения, молекулы которого состоят из атомов дейтерия и атомов 6Li. Бомба деления служит запалом и во время ее взрыва создается высокая температура примерно 107 К и возникают мощные нейтронные потоки. Далее процесс носит цепной характер, нейтроны вызывают реакцию (4.7.2), нагретые до высоких температур ядра дейтерия и трития вступают в реакцию, в результате которой выделяется энергия и образуются нейтроны и т.д. Цепной процесс прекращается тогда, когда термоядерное горючее разлетается на расстояния, при которых концентрация ядер горючего становится недостаточной для протекания цепного термоядерного процесса.

Осуществление в земных условиях управляемого термоядерного синтеза (УТС) должно полностью решить проблему снабжения человечества энергией, по крайней мере, на необозримое будущее. Существующие запасы дейтерия в водах морей и океанов в виде примеси тяжелой воды D2O к обыкновенной воде Н2О (концентрация ядер дейтерия составляет 0,015 %) являются практически неисчерпаемым источником термоядерного топлива. Например, количество дейтерия в стакане воды, несмотря на столь малую концентрацию, энергетически эквивалентно 60 литрам бензина.

Однако интенсивные работы, ведущиеся для реализации УТС в течение последних 50 лет, только продемонстрировали исключительную сложность этой проблемы. Реакции УТС должны протекать в установках ограниченного объема, при нагреве смеси реагирующих ядер до температур ~ 108 ÷ 109 К. При таких температурах вещество переходит в четвертое состояние, называемое плазмой[2]. Горячая плазма, находящаяся в замкнутом объеме, расширяясь, неизбежно вступит в контакт со стенками сосуда и передав им тепло, остынет, возможно, даже расплавив их. Поэтому горячая плазма может существовать только ограниченное время и основной задачей УТС является увеличение времени τ удержания плазмы в нагретом до термоядерных температур состоянии. Превышение выделения энергии в результате термоядерной реакции над затратами энергии для нагревания плазмы до термоядерных температур определяется т.н. критерием Лоусона:

n t >1014 (для d-t реакции, Т = 109 К), n t >1016 (для d-d реакции, Т = 108 К), (4.7.3)

где n [ см -3] – концентрация ядер плазмы, t [ c ] – время удержания.

Согласно (4.7.3) обеспечить положительный энергетический выход установки для УТС можно двумя путями: 1) длительное (τ ≥ 0,1 с) удержание нагретой до необходимой температуры плазмы с концентрацией n ≥ 1015 см -3 в заданном объеме; 2) сверхбыстрое (~ 10-9 с) нагревание малых объемов твердого термоядерного топлива.

Первое направление к сегодняшнему дню наиболее исследовано и развито. Плазму предполагается изолировать от контакта со стенками с помощью магнитного поля. Устройства такого рода получили название магнитных ловушек. На рис. 4.7.1 показана схема тороидальной магнитной ловушки типа токамак (аббревиатура от слов «тороидальная камера, магнитная катушка»). Принцип действия токамака можно понять из рисунка. При разряде конденсаторной батареи большой емкости через первичную обмотку 2 в газовой смеси дейтерия и трития, содержащемся в камере 3 (вторичный виток трансформатора 1), возникает вихревое электрическое поле, направленное по оси тороида, которое вызывает электрический разряд, в результате чего образуется шнур плазмы 4. Ток разряда I нагревает плазму до необходимой термоядерной температуры. Катушка 5 создает сильное магнитное поле, направленное по оси тороида, которое в сочетании с собственным магнитным полем В 0 тока I образует магнитное поле с винтообразными силовыми линиями. Это магнитное поле и должно обеспечить изоляцию плазмы от стенок камеры. Однако такая простая схема удержания плазмы оказалась далекой от совершенства и на пути к решению УТС возникла очень серьезная проблема – неустойчивость плазмы, в результате которой плазменный шнур касается стенок камеры и разрушается. Все ведущиеся в настоящее время работы по реализации УТС с помощью токомаков так или иначе связаны с устранением возникающих многочисленных видов неустойчивости плазменного шнура. С помощью токомаков получены нейтроны термоядерного происхождения и достигнута величина n t = 5·1013 с/см 3 при температуре дейтериво-тритиевой плазмы около 6·107 К.

Второе направление, называемое инерционным удержанием плазмы, заключается в сверхбыстром (за время ~ 10-9 с) сообщении энергии для сжатия и разогрева до термоядерных температур шариков диаметром в 1 мм из твердого термоядерного топлива. Энергия сообщается импульсными ускорителями электронов с величиной тока в несколько мегаампер и энергией электронов в 1÷ 2 МэВ, или же с помощью мощных ипульсных лазеров. Для предотвращения разлета образующейся плазмы и ее сжатия импульсное нагревание необходимо производить одновременно и равномерно со всех сторон. Одна из подобных систем использует 48 мощных импульсных лазеров. Всестороннее облучение сферической мишени приводит к появлению мощных потоков частиц, испаряющихся с поверхности и возникновению реактивной силы, сжимающей вещество мишени в сотни или тысячи раз. Схлопывание ударных волн в конце процесса сжатия (кумуляция) приводит к значительной концентрации энергии в центре мишени. В результате происходит разогрев до высоких температур и термоядерная вспышка, которую можно использовать для получения энергии. На пути к практическому осуществлению инерционных методов удержанием плазмы предстоит преодолеть еще много принципиальных и технических проблем, связанных с созданием большого числа мощных импульсных источников электронного или фотонного излучения с очень близкими параметрами и высоким ресурсом и синхронизацией их действия.

Для преобразования кинетической энергии нейтронов термоядерного происхождения в тепло предполагается камеру с плазмой окружить бланкетом – специальной оболочкой, содержащей изотоп 6Li, который будет использован для воспроизводства трития в реакции (4.7.2). Так как эта реакция тоже экзоэнергетическая, то она добавляет 4,8 МэВ энергии к 17,6 МэВ энергии, выделяющейся в реакции (4.6.19). Бланкет такого рода называют чистым, так как в нем не образуются радиоактивные продукты.

Еще больший энергетический выигрыш можно получить в гибридном бланкете, который дополнительно содержит зоны с 238U. В результате деления ядер 238U быстрыми нейтронами выделяется еще дополнительно около 140 МэВ энергии на один термоядерный нейтрон, а также образуется делящийся нуклид 239Рu. Таким образом, в гибридном бланкете можно получит в шесть раз больше энергии, чем в чистом бланкете. Однако наличие делящихся нуклидов и образование осколков деления создает радиационную обстановку, близкую к той, которая существует в ядерных реакторах.

 




Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 481; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.013 сек.