Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Приращение аргумента




Пусть x – произвольная точка, ледащая в некоторой окрестности фиксированной точки x0. разность x – x0 называется приращение независимой переменной(или приращением аргумента) в точке x0 и обозначается Δx. Таким образом,

Δx = x –x0,

откуда следует, что

x = x0 + Δx.

Приращение функции – разность между двумя значениями функции.

Пусть задана функция у = f(x), определенная при значении аргумента, равном х 0. Дадим аргументу приращение D х, т.е. рассмотрим значение аргумента, равное x 0 + D х. Предположим, что это значение аргумента также входит в область определения данной функции. Тогда разность
D y = f(x 0 + D х)f(x0) называется приращением функции. Приращение функции f (x) в точке x — функция обычно обозначаемая Δ xf от новой переменной Δ x определяемая как

Δ xfx) = f (x + Δ x) − f (x).

Пример 1:

Найти приращение аргумента и приращение функции в точке х0, если

Пример 2. Найти приращение функции f(x) = x2, если х = 1, ∆х = 0,1

Решение: f(х) = х2, f(х+∆х) = (х+∆х)2

Найдем приращение функции ∆f = f(x+∆x) — f(x) = (x+∆x)2 — x2 = x2+2x*∆x+∆x2 — x2 = 2x*∆x + ∆x2/

Подставим значения х=1 и ∆х= 0,1, получим ∆f = 2*1*0,1 + (0,1)2 = 0,2+0,01 = 0,21

Найти приращение аргумента и приращение функции в точки х0

2.f(x) = 2x3. x0 =3 x=2,4

3. f(x) = 2x2+2 x0 =1 x=0,8

4. f(x) = 3x+4 x0 =4 x=3,8

Определение: Производной функции в точке называется предел (если он существует и конечен) отношения приращения функции к приращению аргумента при условии, что последнее стремится к нулю.

Наиболее употребительны следующие обозначения производной:

Таким образом,

Нахождение производной называется дифференцированием. Вводится определение дифференцируемой функции: Функция f, имеющая производную в каждой точке некоторого промежутка, называется дифференцируемой на данном промежутке.

Пусть в некоторой окрестноститочкиопределена функцияПроизводной функции называется такое число , что функцию в окрестности U (x 0) можно представить в виде

f (x 0 + h) = f (x 0) + Ah + o (h)

если существует.

Определение производной функции в точке.

Пусть функция f(x) определена на промежутке (a; b), и - точки этого промежутка.

Определение. Производной функции f(x) в точке называется предел отношения приращения функции к приращению аргумента при . Обозначается .

Когда последний предел принимает конкретное конечное значение, то говорят о существовании конечной производной в точке. Если предел бесконечен, то говорят, что производная бесконечна в данной точке. Если же предел не существует, то и производная функции в этой точке не существует.

Функцию f(x) называют дифференцируемой в точке , когда она имеет в ней конечную производную.

Если функция f(x) дифференцируема в каждой точке некоторого промежутка (a; b), то функцию называют дифференцируемой на этом промежутке. Таким образом, любой точке x из промежутка (a; b) можно поставить в соответствие значение производной функции в этой точке , то есть, мы имеем возможность определить новую функцию , которую называют производной функции f(x) на интервале (a; b).

Операция нахождения производной называется дифференцированием.




Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 1832; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.