КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Математическое ожидание функции одного случайного аргумента
Функции от случайных величин. Функция одного случайного аргумента, ее распределение и математическое ожидание. Функция двух случайных аргументов. Распределение суммы независимых слагаемых. Устойчивость нормального распределения. Лекция 10. В предыдущих лекциях рассматривались некоторые законы распределения случайных величин. При решении задач часто удобно бывает представить исследуемую случайную величину как функцию других случайных величин с известными законами распределения, что помогает уста-новить и закон распределения заданной случайной величины. Определение 10.1. Если каждому возможному значению случайной величины Х соответствует одно возможное значение случайной величины Y, то Y называют функцией случайного аргу-мента Х: Y = φ (X). Выясним, как найти закон распределения функции по известному закону распределения аргумента. 1) Пусть аргумент Х – дискретная случайная величина, причем различным значениям Х соот-ветствуют различные значения Y. Тогда вероятности соответствующих значений Х и Y равны. Пример 1. Ряд распределения для Х имеет вид: Х 5 6 7 8 р 0,1 0,2 0,3 0,4 Найдем закон распределения функции Y = 2 X ² - 3: Y 47 69 95 125 р 0,1 0,2 0,3 0,4 (при вычислении значений Y в формулу, задающую функцию, подставляются возможные значения Х). 2) Если разным значениям Х могут соответствовать одинаковые значения Y, то вероятности значений аргумента, при которых функция принимает одно и то же значение, складываются. Пример 2. Ряд распределения для Х имеет вид: Х 0 1 2 3 р 0,1 0,2 0,3 0,4 Найдем закон распределения функции Y = X ² - 2 Х: Y -1 0 3 р 0,2 0,4 0,4 (так как Y = 0 при Х = 0 и Х = 2, то р (Y = 0) = р (Х = 0) + р (Х = 2) = 0,1 + 0,3 = 0,4). Пусть Y = φ (X) – функция случайного аргумента Х, и требуется найти ее математическое ожидание, зная закон распределения Х. 1) Если Х – дискретная случайная величина, то (10.2) Пример 3. Найдем M (Y) для примера 1: M (Y) = 47·0,1 + 69·0,2 + 95·0,3 + 125·0,4 = 97.
Дата добавления: 2014-01-04; Просмотров: 318; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |