Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Линейная регрессия

Пусть составляющие Х и Y двумерной случайной величины (Х, Y) зависимы. Будем считать, что одну из них можно приближенно представить как линейную функцию другой, например

Y ≈ g (Х) = α + βХ, (11.2)

и определим параметры α и β с помощью метода наименьших квадратов.

Определение 11.2. Функция g (Х) = α + βХ называется наилучшим приближением Y в смысле метода наименьших квадратов, если математическое ожидание М (Y - g (Х))2 принимает наименьшее возможное значение; функцию g (Х) называют среднеквадратической регрессией Y на Х.

Теорема 11.1. Линейная средняя квадратическая регрессия Y на Х имеет вид:

(11.3)

где - коэффициент корреляции Х и Y.

Доказательство. Рассмотрим функцию

F (α, β) = M (Y – α – βX)² (11.4)

и преобразуем ее, учитывая соот-ношения M (X – mx) = M (Y – my) = 0, M ((X – mx)(Y – my)) = = Kxy = rσxσy:

.

Найдем стационарные точки полученной функции, решив систему

Решением системы будет .

Можно проверить, что при этих значениях функция F (α, β) имеет минимум, что доказывает утверждение теоремы.

Определение 11.3. Коэффициент называется коэффициентом регрессии Y на Х, а прямая - (11.5)

- прямой среднеквадратической регрессии Y на Х.

Подставив координаты стационарной точки в равенство (11.4), можно найти минимальное значение функции F (α, β), равное Эта величина называется остаточной дисперсией Y относительно Х и характеризует величину ошибки, допускаемой при замене Y на g (Х) = α+βХ. При остаточная дисперсия равна 0, то есть равенство (11.2) является не приближенным, а точным. Следовательно, при Y и Х связаны линейной функциональной зависимостью. Аналогично можно получить прямую среднеквадратической регрессии Х на Y:

(11.6)

и остаточную дисперсию Х относительно Y. При обе прямые регрессии совпадают. Решив систему из уравнений (11.5) и (11.6), можно найти точку пересечения прямых регрессии – точку с координатами (тх, ту), называемую центром совместного распределения величин Х и Y.

<== предыдущая лекция | следующая лекция ==>
Нормальный закон распределения на плоскости. Линейная регрессия. Линейная корреляция | Линейная корреляция
Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 379; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.