Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Производящие функции для сочетаний

 

Изучая свойства сочетаний (на таблице) было показано, что числа сочетаний совпадают с биномиальными коэффициентами, т.е.

функцию называют перечисляющей производящей функцией для сочетаний из n различных элементов или энумератором.

 

Как ей пользоваться?

 

Пример.

а). t =1

б). t =-1

Рассмотрим а) + б).

Пусть i – четное. Тогда

…………………………….

Пусть i – нечетное.

…………………………….

Тогда а) + б) даст

 

Вычтем из а) б). Тогда:

а) Пусть i – четное, тогда

……………

……………………………….

б). Пусть i – нечетное, тогда

…………………

………………………………

 

перемножим и суммируем члены при t.

…………………………………………….


 

Вывод:

Приведенные примеры показывают, что с помощью энумераторов легко получаются различные комбинаторные формулы, которые раскрывают свойства чисел сочетаний.

 

 

<== предыдущая лекция | следующая лекция ==>
Сочетания с повторениями | Тогда для 3-х элементов с учетом идентифицирующих элементов
Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 293; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.