КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Методы оптимизации
Анализ численных результатов и их применение. На этом этапе прежде всего решается важнейший вопрос о правильности и полноте результатов моделирования и применимости их как в практической деятельности, так и в целях усовершенствования модели. Поэтому в первую очередь должна быть проведена проверка адекватности модели по тем свойствам, которые выбраны в качестве существенных. Перечисленные этапы моделирования находятся в тесной взаимосвязи, в частности, могут иметь место возвратные связи этапов. Так, на этапе построения модели может выясниться, что постановка задачи или противоречива, или приводит к слишком сложной математической модели; в этом случае исходная постановка задачи должна быть скорректирована. Наиболее часто необходимость возврата к предшествующим этапам моделирования возникает на этапе подготовки исходной информации. Если необходимая информация отсутствует или затраты на ее подготовку слишком велики, приходится возвращаться к этапам постановки задачи и ее формализации, чтобы приспособиться к доступной исследователю информации. Недостатки, которые не удается исправить на тех или иных этапах моделирования, устраняются в последующих циклах. Однако результаты каждого цикла имеют и вполне самостоятельное значение. Начав исследование с построения простой модели, можно получить полезные результаты, а затем перейти к созданию более сложной и более совершенной модели, включающей в себя новые условия и более точные математические зависимости. В настоящее время экономист, менеджер может использовать при принятии решения различные компьютерные и математические средства. В памяти компьютеров может содержаться масса информации, организованная с помощью баз данных и других программных продуктов, позволяющих оперативно ею пользоваться. Экономико-математические и эконометрические модели позволяют просчитывать последствия тех или иных решений, прогнозировать развитие событий. Сформулируем основные понятия, используемые в задачах оптимизации: Управляемые переменные x1, x2,…, xn – переменные, значения которых можно выбирать в определенных допустимых пределах; ЛПР (лицо принимающее решение) – человек или группа людей, которые занимаются анализом и выбором значений управляемых переменных, обеспечивающих оптимальное решение; Эффективное решение – набор значений управляемых переменных, который по некоторым соображениям ЛПР считает наиболее предпочтительными среди всех возможных решений; Целевая функция задачи оптимизации – количественная мера оптимальности процесса; Ограничения задачи оптимизации – совокупность условий (равенств, неравенств и т.п.), связывающих характеристики процесса и ограничивающих область изменения управляемых переменных; Неуправляемые параметры – неизменяемые параметры процесса, значения которых известны; Случайные факторы – факторы процесса, для которых ввиду их случайности неизвестны точные значения, но известен закон распределения вероятностей этих значений; Неопределенные факторы – это факторы процесса, значения которых неизвестны; Математическая модель оптимизации процесса – целевая функция и совокупность ограничений, зависящие от значений управляемых переменных, неуправляемых параметров, случайных и неопределенных факторов; Допустимое решение – набор значений управляемых переменных, который удовлетворяет одновременно всем ограничениям задачи оптимизации; Оптимальное решение - набор значений управляемых переменных, который не только удовлетворяет одновременно всем ограничениям задачи оптимизации, но и дает экстремальное значение целевой функции. В зависимости от вида целевой функции, ограничений и присутствия случайных и неопределенных факторов оптимизационные модели можно в общем случае разделить на следующие классы: · задачи математического программирования; · задачи параметрического программирования; · задачи стохастического программирования; · оптимизационные задачи массового облуживания; · задачи статистических игр. Можно выделить несколько основных типов оптимизационных задач: · задачи управления запасами; · задачи распределения ресурсов; · задачи ремонта и замены оборудования; · сетевые оптимизационные задачи; · задачи составления оптимальных расписаний; · задачи оптимизации систем обслуживания; · комбинированные задачи, объединяющие в себе черты задач разных типов. Наиболее часто используются оптимизационные модели принятия решений. Их общий вид таков: F (X) → max (min) X Є A Здесь Х - параметр, который менеджер может выбирать (управляющий параметр). Он может иметь различную природу - число, вектор, множество и т.п. Цель менеджера - максимизировать (минимизировать) целевую функцию F (X), выбрав соответствующий Х. При этом он должен учитывать ограничения X Є A на возможные значения управляющего параметра Х - он должен лежать в множестве А. Приведем основные виды оптимизационных задач менеджмента.
Линейное программирование (ЛП) Среди оптимизационных задач менеджмента наиболее известны задачи линейного программирования, в которых максимизируемая (минимизируемая) функция F (X) является линейной, а ограничения А задаются линейными неравенствами.
Линейное программирование как научно-практическая дисциплина. Из всех задач оптимизации задачи линейного программирования выделяются тем, что в них ограничения - системы линейных неравенств или равенств. Ограничения задают выпуклые линейные многогранники в конечном линейном пространстве. Целевые функции также линейны. То есть: · показатель оптимальности L(X) представляет собой линейную функцию от элементов решения ; · ограничительные условия, налагаемые на возможные решения, имеют вид линейных равенств или неравенств.
Дата добавления: 2014-01-05; Просмотров: 451; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |