Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Вопросы и упражнения. 1. Доказать, что если a1 + a2 + a3 = 0, то для любых векторы

1. Доказать, что если a1 + a2 + a3 = 0, то для любых векторы линейно зависимы.

2. Векторы a1, a2являются линейно зависимыми. Доказать, что векторы b 1 = 2a1 + a2, b 2 = a 1 + 2a2 также линейно зависимы.

3. Векторы a1, a2являются линейно независимыми. Доказать, что векторы b 1 = 2a1 – a2, b 2 = a 1 – 2a2 также линейно независимы.

4. Доказать, что для любых трех векторов a1, a2, a3 и любых трех чисел векторы линейно зависимы.

5. Векторы a1, a2, a3являются линейно независимыми. Доказать, что векторы b 1 = a 1 + a2 + a3, b 2 = a1 + a3, b 3 = a2 + a3 также линейно независимы.

<== предыдущая лекция | следующая лекция ==>
Линейная зависимость и независимость векторов | Геометрический смысл линейной зависимости и независимости векторов на плоскости и в трехмерном пространстве
Поделиться с друзьями:


Дата добавления: 2014-01-05; Просмотров: 618; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.