КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Назначение экспертных систем
Экспертные системы Логическая модель Продукционная модель Продукционная модель, или модель, основанная на правилах, позволяет представить знания в виде предложений типа: Если (условие), то (действие). если А1, А2, …, Аn, то В А1, А2, …, Аn – факты Под условием понимается некоторое предложение-образец, по которому осуществляется поиск в базе знаний, а под действием - действия, выполняемые при успешном исходе поиска (они могут быть промежуточными, выступающими далее как условия, и терминальными или целевыми, завершающими работу системы). При использовании продукционной модели база знаний состоит из набора правил, Программа, управляющая перебором правил, называется машиной вывода. Чаще всего вывод бывает прямой (от данных к поиску цели) или обратный (от цели для ее подтверждения - к данным). Данные - это исходные факты, на основании которых запускается машина вывода - программа, перебирающая правила из базы. Продукционная модель чаще всего применяется в промышленных экспертных системах. Она привлекает разработчиков своей наглядностью, высокой модульностью, легкостью внесения дополнений и изменений и простотой механизма логического вывода. Преимущества продукционных систем: - подавляющая часть человеческих знаний может быть представлена в виде продукций; - системы продукции являются модульными; - при необходимости системы продукций могут реализовывать сложные алгоритмы; - прозрачность системы (легко проследить логику и объяснить полученный результат). Продукционные модели имеют два недостатка: при большом числе продукций (> 1000) проверка непротиворечивости становится сложнее; неоднозначность выбора из фронта готовой продукции. Язык, использующий продукционную модель – ПРОЛОГ. В основе их описания лежит формальная система с четырьмя элементами: М=<Т, Р, А, В >, где Т – множество базовых элементов различной природы с соответствующими процедурами; Р – множество синтаксических правил. С их помощью из элементов Т образуют синтаксически правильные совокупности. Процедура П(Р) определяет, является ли эта совокупность правильной; А- подмножество множества Р, называемых аксиомами. Процедура П(А) дает ответ на вопрос о принадлежности к множеству А; В – множество правил вывода. Применяя их к элементам А, можно получить новые синтаксически правильные совокупности, к которым можно применить эти правила снова. Процедура П(В) определяет для каждой синтаксически правильной совокупности, является ли она выводимой. Экспертные системы (ЭС) - это сложные программные комплексы, аккумулирующие знания специалистов в конкретных предметных областях и тиражирующие этот эмпирический опыт для консультаций менее квалифицированных пользователей. Цель исследования экспертных систем - разработка программ, которые при решении задач из некоторой предметной области, получают результаты, не уступающие по качеству и эффективности результатам, полученным экспертами. Экспертные системы предназначены для решения неформализованных, практически значимых задач. Использование экспертной системы следует только тогда, когда их разработка является возможной и целесообразной. Факты, свидетельствующие о необходимости разработки и внедрения экспертных систем: - нехватка специалистов, расходующих значительное время для оказания помощи другим; - потребность в многочисленном коллективе специалистов, поскольку ни один из них не обладает достаточным знанием; - низкая производительность, поскольку задача требует полного анализа сложного набора условий, а обычный специалист не в состоянии просмотреть (за отведенное время) все эти условия; - наличие конкурентов, имеющих преимущество в том, что они лучше справляются с поставленной задачей. По функциональному назначению экспертные системы можно разделить на следующие типы: 1. Мощные экспертные системы, рассчитанные на узкий круг пользователей (системы управления сложным технологическим оборудованием, экспертные системы ПВО). Такие системы обычно работают в реальном масштабе времени и являются очень дорогими. 2. Экспертные системы, рассчитанные на широкий круг пользователей. К ним можно отнести системы медицинской диагностики, сложные обучающие системы. База знаний этих систем стоит недешево, так как содержит уникальные знания, полученные от специалистов экспертов. Сбором знаний и формированием базы знаний занимается специалист по сбору знаний – инженер-когнитолог. 3. Экспертные системы с небольшим числом правил и сравнительно недорогих. Эти системы рассчитаны на массового потребителя (системы, облегчающие поиск неисправностей в аппаратуре). Применение таких систем позволяет обойтись без высококвалифицированного персонала, уменьшить время поиска и устранения неисправностей. Базу знаний такой системы можно дополнять и изменять, не прибегая к помощи разработчиков системы. В них обычно используются знания из различных справочных пособий и технической документации. 4. Простые экспертные системы индивидуального использования. Часто изготавливаются самостоятельно. Применяются в ситуациях, чтобы облегчить повседневную работу. Пользователь, организовав правила в некоторую базу знаний, создает на ее основе свою экспертную систему. Такие системы находят применение в юриспруденции, коммерческой деятельности, ремонте несложной аппаратуре. Использование экспертных систем и нейронных сетей приносит значительный экономический эффект. Так, например: - American Express сократила свои потери на 27 млн. долларов в год благодаря экспертной системе, определяющей целесообразность выдачи или отказа в кредите той или иной фирме; - DEC ежегодно экономит 70 млн. долларов в год благодаря системе XCON/XSEL, которая по заказу покупателя составляет конфигурацию вычислительной системы VAX. Ее использование сократило число ошибок от 30% до 1%; - Sira сократила затраты на строительство трубопровода в Австралии на 40 млн. долларов за счет управляющей трубопроводом экспертной системы.
Дата добавления: 2014-01-05; Просмотров: 1021; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |