КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Системы счисления применяемые в ЭВМ
LXXXVIII Как видно из примера, смысл каждого символа не зависит от того места, на котором он стоит. Так цифра X, участвуя три раза в записи числа 88, каждый раз означает одну и ту же величину - десять единиц. В позиционной системе счисления значение цифры определяется ее положением в числе: один и тот же знак принимает различные значения. Например, в десятичном числе 333 первая цифра справа означает три единицы, соседняя с ней три десятка, а левая - три сотни. Число можно представить в виде многочлена по степеням 10: 3*102 + 3*101 + 3*100. Любая позиционная система счисления характеризуется основанием. Основание (базис) естественной позиционной системы счисления - число знаков или символов, используемых для изображения цифр в данной системе. Поэтому возможно бесчисленное множество позиционных систем, так как за основание можно принять любое целое число p (p>1):2,3,...,8,...,10,...,16,.., образовав новую систему. Например, возможна шестнадцатеричная система счисления, запись чисел в которой производится с помощью следующих знаков (цифр): 0,1,...,9, A, B, C, D, E, F. Для позиционной системы счисления справедливо равенство A(p)=a(n-1)pn-1 +... + a1 p1 + a0 p0 + …+ a(-1)p-1+...+a(-m)p-m, (1) где A(p) - произвольное число, записанное в системе счисления с основанием p; ai - цифры системы счисления; n, m - число целых и дробных разрядов. На практике используют сокращенную запись чисел, путем перечисления цифр ai с указанием положения запятой: A (p) = a(n-1).. a1a0,a(-1)...a(-m) (2) Эта последовательность цифр, стоящих в правой части равенства (2) и будет являться изображением числа A(p) в p - ичной системе счисления. Числу 86,54 соответствует его значение, согласно (1): 86,54(10)=8*101 + 8*100 + 5*10-1 + 4*10-2. Для примера запишем число X=135(10) в двоичной, троичной, восьмеричной и шестнадцатеричной системах счисления. X = 10000111(2) = 12000(3) = 207(8) = 87(16). Справедливость этих равенств можно подтвердить, используя написание числа X по формуле (1): X(2)=1*27+0*26 +0*25+0*24+0*23+1*22+1*21+1*20=135(10); X(3) = 1*34+2*33+0*32+0*31+0*30 = 135(10); X(8) = 2*82+0*81+7*80 = 135(10); X(16)= 8*161+7*160 = 135(10). Из приведенного примера видно, что увеличение основания системы счисления делает запись числа более компактной (уменьшает потребное количество разрядов для его изображения). В этом смысле наименее экономична двоичная система счисления (в рассмотренном примере требуется восемь разрядов для записи числа вместо двух для шестнадцатеричной системы). Количество разрядов в двоичной системе счисления примерно в 3,3 раза больше потребного количества разрядов в десятичной системе счисления. В табл. 1 приведены эквиваленты десятичных чисел в двоичной, восьмеричной и шестнадцатеричной системах счисления. Системы счисления, применяемые в ЭВМ можно разделить на основную и вспомогательную. Основной является система счисления, в которой представляется и хранится информация, а также выполняются все основные операции в цифровой вычислительной машине. В качестве такой системы используется двоичная система счисления. Несмотря на громоздкость записи, она имеет перед другими системами счисления значительные преимущества. Это прежде всего: · простота конструкции элементов, представляющих каждый разряд числа. При применении двоичной системы счисления они наиболее просты, так как должны иметь только два устойчивых состояния, соответствующих цифрам 0 и 1, которые изображают коэффициенты ai в равенстве (1). Это увеличивает надежность функционирования ЭВМ; · простота выполнения арифметических операций является свойством двоичной арифметики (см. табл. 2); · немало важное значение при выборе основной системы счисления имеет тот факт, что в этом случае можно использовать хорошо разработанный аппарат двоичной логики. Операции сложения, вычитания и умножения двоичных чисел представлены в табл. 2. Таблица 1 Эквиваленты десятичных чисел в различных системах счисления
Операции сложения, вычитания, умножения и деления двоичных чисел выполняются по тем же правилам, которыми мы пользуемся при аналогичных действиях с десятичными числами. Таблица 2
Вспомогательные системы счисления используются для ввода и вывода информации, а также для перехода из одной системы счисления к другой. В качестве вспомогательных систем счисления применяются: десятичная, восьмеричная и шестнадцатеричная системы. Исходная числовая информация и результаты решения представляются, как правило, в десятичной системе счисления. Программа часто кодируется в шестнадцатеричной системе счисления, имеющей компактную запись, и, вместе с тем, делающей простой перевод чисел в двоичную систему счисления. Шестнадцатеричные цифры имеют 16 значений: от 0 до 15; они записываются цифрами от 0 до 9, затем идет буква А (обозначает число 10), буква B (обозначает 11) и далее от С до F (со значениями от 12 до 15). Десятичные эквиваленты чисел представлены в табл.1. Каждая шестнадцатеричная цифра соответствует комбинации четырех двоичных, т.е. 4 битам (16=24). Если для записи программы применяется восьмеричная система, использующая для записи числа цифры от 0 до 7, каждой цифре соответствует 3 бита (8=23). Использование двоичной системы счисления для ЭВМ связано с необходимостью перевода вводимых в ЭВМ чисел в двоичную систему счисления и обратного преобразования числовых данных при выводе из ЭВМ. Эти преобразования осуществляются автоматически с использованием специально разработанных методов. Однако если потребуется ручной перевод при отладке программы, расчете контрольной точки и т.д., то его можно осуществить несколькими путями: для целых чисел, правильных дробей, произвольных чисел (неправильных дробей). В цифровых вычислительных машинах все арифметические операции сводятся к операции сложения.
Дата добавления: 2014-01-05; Просмотров: 1791; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |