In many situations the force acting on a particle varies both in magnitude and in direction. In this section we consider cases in which the force and the displacement lie along the same line, say, the x axis. We begin by showing that work may be calculated from the area under the F versus x graph.
FIGURE 4.2
Let us first consider the work done by a constant force F = Fxi on a body whose displacement s = ∆x i; that is,
W = F · s = Fx ∆x
The work is positive if Fx and ∆ х are in the same direction, and it is negative if they are in opposite directions. We may represent this work by the area under the graph of Fx versus x. In Fig. 4.2 we have taken Fx = Fo. The work done in a displacement from xA to xB is F0(xB− xA), which is the shaded area in the graph. A displacement from xB to xA would mean that the area has a negative sign.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав!Последнее добавление