На множестве всех линейных преобразований пространства V расмотрим операции:
1. Умножение на число: .
2. Сложение (вычитание)
3. Умножение .
Легко проверить линейность всех этих преобразований и вывести следующие формулы, связывающие их матрицы
1.
2.
3.
Линейное преобразование, переводящее каждый вектор в себя, называется тождественным преобразованием и обозначается . В любом базисе матрица тождественного преобразования равна единичной.
Пусть - некоторый многочлен, - линейное преобразование пространства V. Сопоставим многочлену линейное преобразование . Будем говорить, что преобразование получено подстановкой в многочлен . Матрица может быть вычислена по формуле .
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав!Последнее добавление