Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Собственные векторы и собственные числа. Характеристическое уравнение




Инвариантные пространства

Подпространство W называется инвариантным относительно линейного преобразования , если для любого x из W его образ также принадлежит W.

Свойство 7.2. - инвариантное подпространство.

Доказательство. Пусть . Тогда .

Свойство 7.3. - инвариантное подпространство.

Доказательство. Пусть , тогда .

Свойство 7.4. Пусть - многочлен, тогда инвариантное пространство относительно .

Доказательство. Пусть , то есть . Далее, , то есть .

Свойство 7.5. Пусть - многочлен, тогда инвариантное пространство относительно .

Доказательство. Пусть , тогда . Далее, , то есть .

Знание инвариантных подпространств позволяет найти базис пространства, в котором матрица линейного преобразования имеет простую структуру. Действительно, пусть базис инвариантного подпространства W. Дополним его до базиса всего пространства векторами . Координаты образов первых k векторов могут иметь только k первых ненулевых компонент. Следовательно, в матрице линейного преобразования содержится в левом нижнем углу блок размером (n - k)* k, состоящий из одних нулей.

Если пространство V представляется в виде прямой суммы инвариантных подпространств W и U, то построим базис пространства V, объединив базисы W и U. В построенном базисе матрица линейного преобразования будет иметь блочно диагональный вид.

Таким образом, структура матрицы линейного преобразования имеет тем более простой вид, чем меньше размерность инвариантных подпространств, в прямую сумму которых расщепляется исходное пространство V.

Базис одномерного инвариантного подпространства называется собственным вектором. Другими словами, ненулевой вектор x называется собственным, если . Число называется собственным. Запишем это равенство в координатах , или . Последнее равенство можно рассматривать как квадратную систему линейных уравнений с n неизвестными. По правилу Крамера, если , то система имеет единственное нулевое решение. Следовательно, собственные числа являются корнями уравнения . Данное уравнение называется характеристическим. Обратно, если корень характеристического уравнения, то система имеет ненулевое решение, и значит, является собственным числом. Тем самым доказана теорема.

Теорема 7.1. Корнями характеристического уравнения являются только собственные числа. Все собственные числа являются корнями характеристического уравнения.

Коэффициенты характеристического уравнения не зависят от выбора базиса. Действительно, матрицы линейного преобразования в разных базисах связаны уравнением , откуда .

Собственные векторы для собственного числа принадлежат ядру линейного преобразования . Подпространство называется корневым подпространством, соответствующим собственному числу .

Приведем простые факты.

Следствие 7.1. Линейное преобразование линейного пространства над полем комплексных чисел имеет собственный вектор.

Доказательство. Над полем комплексных чисел характеристический многочлен имеет хотя бы один корень, а, значит, линейное преобразование имеет собственный вектор.

Следствие 7.2. Линейное преобразование линейного пространства над полем вещественных чисел имеет инвариантное подпространство размерности не выше 2.

Доказательство. Пусть - линейное преобразование пространства V над полем R. Если характеристический многочлен имеет вещественный корень, то утверждение леммы очевидно. На множестве определим операцию сложения и умножения на комплексное число . Множество относительно введенных операций сложения векторов и умножения на скаляр образует линейное пространство над C. Вектор x из V можно рассматривать как вектор из пространства , записанный в виде x + i 0. Базис пространства V является базисом пространства , и, значит, размерности пространств V исовпадают. В пространстве рассмотрим линейное преобразование . Пусть - базис V. Тогда - базис и . Пусть - комплексное собственное число, а - соответствующий собственный вектор линейного преобразования . Тогда , и, значит, , . Линейная оболочка векторов x, y образует двумерное инвариантное подпространство.




Поделиться с друзьями:


Дата добавления: 2014-01-05; Просмотров: 365; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.015 сек.